Two-magnon states of the one-dimensional isotropic Heisenberg model with free boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 338-345
Voir la notice de l'article provenant de la source Math-Net.Ru
By solving the Schrödinger equation the eigenfunctions and eigenvalues of the energy of two-magnon states in the one-dimensional isotropic Heisenberg model $S=1/2$ with free boundary conditions were found. The obtained solutions are single-parametrical unlike the two-parametrical solutions of the model with cyclic boundary condition. The amplitudes of the wave functions of the coupled two-magnon states have exponential dependence on both the distance between reversed spins, and the coordinate of the center of the complex. This leads to the localization of the low energy complexes at the ends of the ferromagnetic chain.
@article{TMF_1997_113_2_a9,
author = {S. N. Martynov},
title = {Two-magnon states of the one-dimensional isotropic {Heisenberg} model with free boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {338--345},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a9/}
}
TY - JOUR AU - S. N. Martynov TI - Two-magnon states of the one-dimensional isotropic Heisenberg model with free boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 338 EP - 345 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a9/ LA - ru ID - TMF_1997_113_2_a9 ER -
%0 Journal Article %A S. N. Martynov %T Two-magnon states of the one-dimensional isotropic Heisenberg model with free boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 1997 %P 338-345 %V 113 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a9/ %G ru %F TMF_1997_113_2_a9
S. N. Martynov. Two-magnon states of the one-dimensional isotropic Heisenberg model with free boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 338-345. http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a9/