Absorption spectrum of one-dimensional chain with Frenkel's exiton under diagonal disorder represented by hyperbolic defects
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 331-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for calculating the absorption spectrum of a long one-dimensional closed in a ring chain with Frenkel's exiton under diagonal disorder represented by hyperbolic singularities of atomic splitting as a function of atomic absorption is proposed. It is shown that such defects lead to appearance of a wing in a exiton zone of chain without defects, whose form does not depend on number and mutual positions of defects, while it's value is proportional to the sum of amplitudes of defects. The proposed method uses a continual approximation only.
@article{TMF_1997_113_2_a8,
     author = {G. G. Kozlov},
     title = {Absorption spectrum of one-dimensional chain with {Frenkel's} exiton under diagonal disorder represented by hyperbolic defects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--337},
     year = {1997},
     volume = {113},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a8/}
}
TY  - JOUR
AU  - G. G. Kozlov
TI  - Absorption spectrum of one-dimensional chain with Frenkel's exiton under diagonal disorder represented by hyperbolic defects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 331
EP  - 337
VL  - 113
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a8/
LA  - ru
ID  - TMF_1997_113_2_a8
ER  - 
%0 Journal Article
%A G. G. Kozlov
%T Absorption spectrum of one-dimensional chain with Frenkel's exiton under diagonal disorder represented by hyperbolic defects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 331-337
%V 113
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a8/
%G ru
%F TMF_1997_113_2_a8
G. G. Kozlov. Absorption spectrum of one-dimensional chain with Frenkel's exiton under diagonal disorder represented by hyperbolic defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 331-337. http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a8/

[1] F. Dyson, Phys. Rev., 92 (1953), 1331 | DOI | MR | Zbl

[2] P. Lloyd, J. Phys. C: Solid State Phys., 2 (1969), 1717 | DOI

[3] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu razuporyadochennykh sistem, Nauka, M., 1982 | MR

[4] G. G. Kozlov, Optika i spektroskopiya, 82:2 (1997), 266–271

[5] V. I. Smirnov, Kurs vysshei matematiki, T. 3, Nauka, M., 1974, S. 347 | MR