$P_\infty$ algebra of KP, free fermions and 2-cocycle in the Lie algebra of pseudodifferential operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 231-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The symmetry algebra $P_\infty=W_\infty\oplus H\oplus I_\infty$ of integrable systems is defined. As an example, the classical Sophus Lie point symmetries of all higher KP equations are obtained. It is shown that one (“positive”) half of the point symmetries belongs to the $W_\infty$ symmetries, while the other (“negative”) part belongs to the $I_\infty$ ones. The corresponding action on the tau-function is obtained for the positive part of the symmetries. The negative part can not be obtained from the free fermion algebra. A new embedding of the Virasoro algebra into $\operatorname{gl}(\infty)$ describes conformal transformations of the KP time variables. A free fermion algebra cocycle is described as a PDO Lie algebra cocycle.
@article{TMF_1997_113_2_a1,
     author = {P. Winternitz and A. Yu. Orlov},
     title = {$P_\infty$ algebra of {KP,} free fermions and 2-cocycle in the {Lie} algebra of pseudodifferential operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--260},
     year = {1997},
     volume = {113},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a1/}
}
TY  - JOUR
AU  - P. Winternitz
AU  - A. Yu. Orlov
TI  - $P_\infty$ algebra of KP, free fermions and 2-cocycle in the Lie algebra of pseudodifferential operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 231
EP  - 260
VL  - 113
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a1/
LA  - ru
ID  - TMF_1997_113_2_a1
ER  - 
%0 Journal Article
%A P. Winternitz
%A A. Yu. Orlov
%T $P_\infty$ algebra of KP, free fermions and 2-cocycle in the Lie algebra of pseudodifferential operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 231-260
%V 113
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a1/
%G ru
%F TMF_1997_113_2_a1
P. Winternitz; A. Yu. Orlov. $P_\infty$ algebra of KP, free fermions and 2-cocycle in the Lie algebra of pseudodifferential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 2, pp. 231-260. http://geodesic.mathdoc.fr/item/TMF_1997_113_2_a1/

[1] B. B. Kadomtsev, V. I. Petviashvili, DAN SSSR, 129:4 (1970), 753

[2] A. Yu. Morozov, UFN, 164 (1994), 3–62 | DOI

[3] V. S. Dryuma, Pisma v ZhETF, 19 (1973), 219

[4] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8:3 (1974), 43 ; 13:3 (1979), 13 | MR | Zbl | MR | Zbl

[5] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[6] M. J. Ablowitz, P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[7] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19 (1983), 943 | DOI | MR | Zbl

[8] L. A. Dickey, Soliton Equations and Hamiltonian System, World Scientific, Singapore, 1991 | MR | Zbl

[9] A. Yu. Orlov, “Vertex operators, $\partial$ bar problem, symmetries, Hamiltonian and Lagrangian formalism of $(2+1)$-dimensional integrable systems”, Plazma Theory and Nonlinear and Turbulent Processes in Physics, Proc. III Kiev. Intern. Workshop. V. I (1987), eds. V. G. Bar'yakhtar, V. E. Zakharov, World Scientific, Singapore, 1988, 116–134 | MR | Zbl

[10] A. Yu. Orlov, E. I. Shulman, Dopolnitelnye simmetrii $2+1$-mernykh integriruemykh sistem, Preprint No 277, Institut avtomatiki i elektrometrii, Novosibirsk, 1985

[11] A. Yu. Orlov, E. I. Shulman, TMF, 64 (1985), 323 | MR | Zbl

[12] A. Yu. Orlov, E. I. Schulman, Lett. Math. Phys., 12 (1986), 171 | DOI | MR | Zbl

[13] L. A. Dickey, Mod. Phys. Lett. A, 8 (1993), 1259–1272 ; 1357–1377 | DOI | MR | Zbl | MR | Zbl

[14] M. Adler, T. Shiota, P. van Moerbeke, Commun. Math. Phys., 171 (1995), 547–588 ; Phys. Lett. A, 194 (1994), 33–43 | DOI | MR | Zbl | DOI | MR

[15] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 257 (1991), 565 | DOI | MR

[16] A. Gerasimov, Yu. Makeenko, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Mod. Phys. Lett. A, 6 (1991), 3079 | DOI | MR | Zbl

[17] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, Nucl. Phys. B, 366 (1991), 569–601 | DOI | MR

[18] K. Takasaki, Commun. Math. Phys., 181 (1996), 131–156 ; E-print hep-th/9506089 | DOI | MR | Zbl

[19] B. Bakalov, E. Horozov, M. Yakimov, Highest weight modules over $W_{1+\infty}$ algebra and the bispectral problem, Sofia University preprint, 1996 | MR

[20] V. Kac, A. Radul, Commun. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl

[21] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin–Heidelberg–New York, 1986

[22] B. Champagne, W. Hereman, P. Winternitz, Comput. Phys. Commun., 66 (1991), 319 | DOI | MR | Zbl

[23] D. David, N. Kamran, D. Levi, P. Winternitz, Phys. Rev. Lett., 55 (1985), 2111 ; J. Math. Phys., 27 (1986), 1225 | DOI | MR | DOI | MR | Zbl

[24] D. David, D. Levi, P. Winternitz, Phys. Lett. A, 118 (1986), 390 | DOI | MR

[25] B. Champagne, P. Winternitz, J. Math. Phys., 29 (1988), 1 | DOI | MR | Zbl

[26] L. Martina, P. Winternitz, Ann. Phys. (N. Y.), 196 (1989), 231 | DOI | MR | Zbl

[27] P. Winternitz, “Kac–Moody–Virasoro symmetries of integrable nonlinear partial differential equations”, Symmetries and Nonlinear Phenomena, eds. D. Levi, P. Winternitz, World Scientific, Singapore, 1988, 358–375 | MR

[28] B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, J. Math. Phys., 27 (1986), 2848 | DOI | MR | Zbl

[29] J. Rubin, P. Winternitz, J. Math. Phys., 31 (1990), 2085 | DOI | MR | Zbl

[30] D. David, D. Levi, P. Winternitz, Phys. Lett. A, 129 (1988), 161 | DOI | MR

[31] D. Levi, P. Winternitz, J. Math. Phys., 34 (1993), 3713 | DOI | MR | Zbl

[32] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det\bar\partial_j$ and Segal–Wilson tau-function”, Problems of Modern Quantum Field Theory, eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin–Heidelberg–New York, 1989, 86–106 | DOI | MR

[33] P. G. Grinevich, A. Yu. Orlov, Funkts. analiz i ego prilozh., 24 (1990), 72 | MR | Zbl

[34] O. S. Kravchenko, B. A. Khesin, Funkts. analiz i ego prilozh., 25 (1991), 83–85 | MR | Zbl

[35] A. Yu. Orlov, “Volterra operators for zero curvature representation. Universality of KP”, Plazma Theory and Nonlinear and Turbulent Processes in Physics, Springer Series in Nonlinear Dynamics, eds. A. Fokas, D. Kaup, A. Newell, V. E. Zakharov, Springer, Berlin–New York–London, 1991, 126–131

[36] G. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5 | DOI | Zbl

[37] A. P. Veselov, UMN, 35:1 (1980), 195–196 | MR | Zbl

[38] A. Yu. Orlov, P. Winternitz, “Algebra of pseudodifferential operators and symmetries of equations in the Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 1997 (to appear) | MR

[39] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4, 1984, 1 | MR | Zbl

[40] A. Yu. Orlov, Symmetries for unifying different soliton systems into a single integrable hierarchy, Preprint IINS/Oce-04/03, 1991

[41] S. P. Tsarev, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1066 | MR

[42] B. A. Dubrovin, “Geometry of 2D topological field theories”, Intergable Systems and Quantum Groups, Lect. Notes Math., 1620, Springer, Berlin, 1996 | MR | Zbl

[43] V. Fateev, S. Lukyanov, Int. J Mod. Phys. A, 7 (1992), 853–876 | DOI | MR | Zbl

[44] M. Bershadskii, A. Radul, Int. J. Mod. Phys. A, 2 (1987), 165 | DOI | MR

[45] P. G. Zograf, L. A. Takhtadzhyan, Matem. sb., 132 (174) (1987), 304–321 | Zbl

[46] J. L. Burchnall, T. W. Chaundy, Proc. Roy. Soc. A, 118 (1928), 557–583 | DOI | Zbl

[47] M. Adler, P. van Moerbeke, Compatible Poisson structures and the Virasoro algebra, Brandais, Boston, 1995 | MR

[48] J. J. Duistermaat, F. A. Grundbaum, Commun. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl

[49] A. Yu. Orlov, S. Rauch-Wojciechowski, Physica D, 69 (1993), 77–84 | DOI | MR | Zbl

[50] P. van Moerbeke, “Integrable Foundations of String Theory”, Lectures at CIMPA Summer School, Nice, 1991

[51] A. Fokas, P. Santini, Commun. Math. Phys., 116 (1989), 449–474 | DOI | MR