Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 100-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the physical phase space of $\gamma$-deformed, Hamiltonian-lattice Yang–Mills theory, which was recently proposed in [1], [2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with $(L-V+1)$ handles and, therefore, with the physical phase space of the corresponding $(2+1)$-dimensional Chern–Simons model, where $L$ and $V$ are, respectively, the total number of links and vertices of the lattice. The deformation parameter $\gamma$ is identified with $2\pi/k$ and $k$ is an integer entering the Chern–Simons action.
@article{TMF_1997_113_1_a8,
     author = {S. A. Frolov},
     title = {Physical phase space of the lattice {Yang{\textendash}Mills} theory and moduli space of flat connections on a {Riemann} surface},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--111},
     year = {1997},
     volume = {113},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/}
}
TY  - JOUR
AU  - S. A. Frolov
TI  - Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 100
EP  - 111
VL  - 113
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/
LA  - ru
ID  - TMF_1997_113_1_a8
ER  - 
%0 Journal Article
%A S. A. Frolov
%T Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 100-111
%V 113
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/
%G ru
%F TMF_1997_113_1_a8
S. A. Frolov. Physical phase space of the lattice Yang–Mills theory and moduli space of flat connections on a Riemann surface. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/

[1] S. A. Frolov, Mod. Phys. Lett. A, 10:34 (1995), 2619–2631 | DOI | MR | Zbl

[2] S. A. Frolov, Hamiltonian lattice Yang–Mills theory and the Heisenberg double, E-print hep-th/9502121

[3] K. Wilson, Phys. Rev. D, 10 (1974), 2445 | DOI

[4] J. B. Kogut, L. Susskind, Phys. Rev. D, 11 (1975), 395 | DOI

[5] V. G. Drinfeld, Sov. Math. Doklady, 27 (1983), 68–71 | MR | Zbl

[6] M. A. Semenov-Tian-Shansky, “Dressing transformations and Poisson-Lie group actions”, Publ. RIMS, Kyoto Univ., 21:6 (1985), 1237 | DOI | MR

[7] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl

[8] A. Yu. Alekseev, L. D. Faddeev, Commun. Math. Phys., 141 (1991), 413–422 | DOI | MR | Zbl

[9] M. A. Semenov-Tyan-Shanskii, TMF, 93:2 (1992), 302 | MR

[10] A. Yu. Alekseev, A. Z. Malkin, Commun. Math. Phys., 162 (1993), 147–173 | DOI | MR

[11] A. Yu. Alekseev, L. D. Faddeev, An involution and dynamics for the q-deformed quantum top, E-print hep-th/9406196

[12] A. Yu. Alekseev, A. Z. Malkin, Symplectic structure of the moduli space of flat connection on a Riemann surface, E-print hep-th/9312004 | MR

[13] A. Yu. Alekseev, Integrability in the Hamiltonian Chern–Simons theory, ; А. Ю. Алексеев, Санкт-Петербургский матем. ж., 6:2 (1994), 1 E-print hep-th/9311074 | MR

[14] V. V. Fock, A. A. Rosly, Poisson structures on moduli of flat connections on Riemann surfaces and $r$-matrices, Preprint ITEP 72-92, June 1992, ITEP, M., 1992 | MR

[15] E. Witten, Commun. Math. Phys., 121 (1989), 351 | DOI | MR | Zbl

[16] S. Axelrod, S. Della Pietra, E. Witten, J. Differ. Geom., 33 (1991), 787 | DOI | MR | Zbl

[17] V. Drinfeld, “Quantum Groups”, Proc. ICM-86 (Berkeley, California, USA, 1986), 1987, 798–820 | MR | Zbl

[18] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 179–206

[19] A. Yu. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern Simons theory. I; II, HUTMP 94-B336

[20] D. V. Boulatov, Int. J. Mod. Phys. A, 8 (1993), 3139 | DOI | MR | Zbl

[21] E. Buffenoir, Ph. Roche, Two dimensional lattice gauge theory based on a quantum group, Preprint CPTH A 302-05/94 | MR