Physical phase space of the lattice Yang--Mills theory and moduli space of flat connections on a Riemann surface
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 100-111

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the physical phase space of $\gamma$-deformed, Hamiltonian-lattice Yang–Mills theory, which was recently proposed in [1], [2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with $(L-V+1)$ handles and, therefore, with the physical phase space of the corresponding $(2+1)$-dimensional Chern–Simons model, where $L$ and $V$ are, respectively, the total number of links and vertices of the lattice. The deformation parameter $\gamma$ is identified with $2\pi/k$ and $k$ is an integer entering the Chern–Simons action.
@article{TMF_1997_113_1_a8,
     author = {S. A. Frolov},
     title = {Physical phase space of the lattice {Yang--Mills} theory and moduli space of flat connections on a {Riemann} surface},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {100--111},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/}
}
TY  - JOUR
AU  - S. A. Frolov
TI  - Physical phase space of the lattice Yang--Mills theory and moduli space of flat connections on a Riemann surface
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 100
EP  - 111
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/
LA  - ru
ID  - TMF_1997_113_1_a8
ER  - 
%0 Journal Article
%A S. A. Frolov
%T Physical phase space of the lattice Yang--Mills theory and moduli space of flat connections on a Riemann surface
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 100-111
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/
%G ru
%F TMF_1997_113_1_a8
S. A. Frolov. Physical phase space of the lattice Yang--Mills theory and moduli space of flat connections on a Riemann surface. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a8/