Dynamic spin susceptibility in the Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 124-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By employing a new diagram technique developed for systems with strong correlations, the dynamic spin susceptibility for the Hubbard model is calculated. The single-site interaction is allowed for in the zero-order approximation, while electron hopping is taken into account by the evolutoin operator. We consider the second order of the perturbation theory and calculate the sum of the two-particle single-site ladder-type diagrams that are irreducible. Equations determinig the static susceptebility and spin wave spectrum are obtained.
@article{TMF_1997_113_1_a10,
     author = {V. A. Moskalenko and N. M. Plakida},
     title = {Dynamic spin susceptibility in the {Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--138},
     year = {1997},
     volume = {113},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a10/}
}
TY  - JOUR
AU  - V. A. Moskalenko
AU  - N. M. Plakida
TI  - Dynamic spin susceptibility in the Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 124
EP  - 138
VL  - 113
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a10/
LA  - ru
ID  - TMF_1997_113_1_a10
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%A N. M. Plakida
%T Dynamic spin susceptibility in the Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 124-138
%V 113
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a10/
%G ru
%F TMF_1997_113_1_a10
V. A. Moskalenko; N. M. Plakida. Dynamic spin susceptibility in the Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 1, pp. 124-138. http://geodesic.mathdoc.fr/item/TMF_1997_113_1_a10/

[1] J. Hubbard, Proc. Roy. Soc. A, 276 (1963), 238 | DOI

[2] J. Hubbard, Proc. Roy. Soc. A, 296 (1967), 82 | DOI

[3] J. Hubbard, K. P. J. Jain, Phys. C (Proc. Phys. Soc.). Ser. 2, 1 (1968), 1650 | DOI

[4] W. Brenig, Phys. Rep., 251 (1995), 154 | DOI

[5] P. M. Slobodyan, I. V. Stasyuk, TMF, 19 (1974), 423

[6] R. O. Zaitsev, ZhETF, 68 (1975), 207; 70 (1976), 1100

[7] Yu. A. Izyumov, Yu. M. Skryabin, Statisticheskaya mekhanika magnitnouporyadochennykh sistem, Nauka, M., 1987 | MR

[8] M. I. Vladimir, V. A. Moskalenko, TMF, 82 (1990), 428

[9] S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, TMF, 85 (1990), 248

[10] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[11] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[12] T. Izuyama, D. Kim, R. Kubo, J. Phys. Soc. Jpn., 18 (1963), 1250 | DOI

[13] Y. A. Izyumov, B. M. Letfulov, J. Phys. Cond. Matter., 2 (1990), 8905 | DOI

[14] Y. A. Izyumov, B. M. Letfulov, Int. J. Mod. Phys. B, 6 (1992), 311

[15] F. Onufrieva, J. Rossat-Mignot, Phys. Rev. B, 52 (1995), 7572 | DOI