Limits of applicability of the tight binding approximation for complex-valued potential function
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 448-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a one-dimensional Schrödinger operator with periodic potential that is constructed as a sum of shifts of a given complex-valued potential $q\in L^1(\mathbf R)$. A mathematical basis of the tight binding approximation in this case is given. Let $\lambda_0$ be an isolated eigenvalue of Schrödinger operator with potential $q$. Then for the operator with periodic potential there exists a continuos spectrum that lies near $\lambda_0$. An asymptotic behavior of this part of the spectrum for the cases of one- and two-dimensional invariant subspace corresponding to $\lambda_0$ when the period tends to infinity is studied.
@article{TMF_1997_112_3_a7,
     author = {A. L. Mironov and V. L. Oleinik},
     title = {Limits of applicability of the tight binding approximation for complex-valued potential function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--466},
     year = {1997},
     volume = {112},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a7/}
}
TY  - JOUR
AU  - A. L. Mironov
AU  - V. L. Oleinik
TI  - Limits of applicability of the tight binding approximation for complex-valued potential function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 448
EP  - 466
VL  - 112
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a7/
LA  - ru
ID  - TMF_1997_112_3_a7
ER  - 
%0 Journal Article
%A A. L. Mironov
%A V. L. Oleinik
%T Limits of applicability of the tight binding approximation for complex-valued potential function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 448-466
%V 112
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a7/
%G ru
%F TMF_1997_112_3_a7
A. L. Mironov; V. L. Oleinik. Limits of applicability of the tight binding approximation for complex-valued potential function. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 448-466. http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a7/

[1] V. L. Oleinik, J. Stat. Phys., 59:3/4 (1990), 665–678 | DOI | MR

[2] A. L. Mironov, V. L. Oleinik, TMF, 99:1 (1994), 103–120 | MR | Zbl

[3] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[4] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[5] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 2, IIL, M., 1961 | MR

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, T. 4, Mir, M., 1982 | MR

[7] M. I. Serov, DAN SSSR, 131:1 (1960), 27–29 | MR | Zbl

[8] F. S. Rofe-Beketov, DAN SSSR, 152:6 (1963), 1312–1315 | MR | Zbl

[9] V. A. Tkachenko, DAN SSSR, 155:2 (1964), 289–291 | MR | Zbl

[10] A. I. Anselm, Vvedenie v teoriyu poluprovodnikov, Nauka, M., 1978 | MR

[11] F. Bassani, Dzh. Pastori Parravichini, Elektronnye sostoyaniya i opticheskie perekhody v tverdykh telakh, Nauka, M., 1982

[12] Dzh. Kalluei, Teoriya energeticheskoi zonnoi struktury, Mir, M., 1969

[13] G. V. Galloonov, V. L. Oleinik, B. S. Pavlov, J. Math. Phys., 34:3 (1993), 936 | DOI | MR | Zbl

[14] L. A. Pastur, V. A. Tkachenko, Mat. zametki, 50:4 (1991), 88–95 | MR

[15] V. A. Tkachenko, Ann. Math., 143 (1996), 181 | DOI | MR | Zbl

[16] V. A. Tkachenko, Adv. Sov. Math., 19 (1994), 41 | MR | Zbl

[17] V. E. Lyantse, “Nesamosopryazhennyi differentsialnyi operator vtorogo poryadka na poluosi”, Dobavlenie k kn.: M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | Zbl

[18] Z. Flyugge, Zadachi po kvantovoi mekhanike, T. 1, Mir, M., 1974

[19] A. L. Mironov, V. L. Oleinik, J. Stat. Phys., 75:1/2 (1994), 317 | DOI | MR | Zbl

[20] A. A. Frost, J. Chem. Phys., 25:6 (1956), 1150 | DOI

[21] T. C. Scott, J. F. Babb, A. Dalgarno, J. D. Morgan III, J. Chem. Phys., 99:4 (1993), 2841 | DOI

[22] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, Adv. Comput. Math. (to appear) | Zbl

[23] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, S. M. Watt, Maple V Language Reference Manual, Springer, New York, 1991