Superintegrable systems and classical $r$-matrix method
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 428-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Superintegrable systems are considered in the framework of the classical $r$-matrix method.By using other authomorphisms of the loop algebras new superintegrable systems with rational potentials from geodesic motion on $\mathbb R^{2n}$ are constructed.
@article{TMF_1997_112_3_a6,
     author = {A. V. Tsiganov},
     title = {Superintegrable systems and classical $r$-matrix method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {428--447},
     year = {1997},
     volume = {112},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a6/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Superintegrable systems and classical $r$-matrix method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 428
EP  - 447
VL  - 112
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a6/
LA  - ru
ID  - TMF_1997_112_3_a6
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Superintegrable systems and classical $r$-matrix method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 428-447
%V 112
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a6/
%G ru
%F TMF_1997_112_3_a6
A. V. Tsiganov. Superintegrable systems and classical $r$-matrix method. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 428-447. http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a6/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR

[2] Ya. A. Smorodinsky, M. Uhlir, P. Winternitz, I. Friz, Sov. J. Nucl. Phys., 4 (1966), 444

[3] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[4] D. Bonatos, C. Daskaloyannis, K. Kokkotas, Phys. Rev. A, 50 (1994), 3700 ; P. Letourneau, L. Vinet, Ann. Phys., 243 (1995), 144 | DOI | MR | DOI | MR | Zbl

[5] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[6] S. Wojciechowski, Phys. Lett. A, 95 (1983), 279 ; 111 (1985), 101 | DOI | MR | DOI | MR

[7] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[8] Dinamicheskie sistemy–VII, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravleniya, 16, VINITI, M., 1987, 86–227

[9] J. Dixmier, Enveloping algebras, Cauthier-Villars, Paris, 1974 | MR

[10] A. G. Reyman, M. A. Semenov-Tian Shansky, Phys. Lett. A, 130 (1988), 456 | DOI | MR

[11] V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990 | MR

[12] P. P. Kulish, E. K. Sklyanin, “Quantum Spectral Transform Method”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta and C. Montonen, Springer, Berlin, 1982, 61–119 | DOI | MR

[13] A. A. Belavin, Funkts. analiz i ego prilozh., 14 (1980), 18 | MR | Zbl

[14] E. K. Sklyanin, J. Soviet. Math., 46 (1989), 1664 | DOI | MR

[15] M. Gaudin, J. Phys. A, 37 (1976), 1087 | MR

[16] V. B. Kuznetsov, TMF, 91:1 (1992), 83 | MR

[17] J. C. Eilbeck, V. Z. Enolskii, V. B. Kuznetsov, A. V. Tsiganov, J. Phys. A, 27 (1994), 567 | DOI | MR | Zbl

[18] P. P Kulish, S. Rauch-Wojciechowski, A. V. Tsiganov, J. Math. Phys., 37 (1996), 3365 | DOI | MR

[19] A. V. Tsiganov, Automorphisms of $sl(2)$ and dynamical $r$-matrices, , 1996 E-print solv-int/9610003 | MR

[20] J. Moser, Commun. Pure Appl. Math., 23 (1970), 609 | DOI | MR | Zbl

[21] J. Harnad, P. Winternitz, Commun. Math. Phys., 172 (1995), 263 | DOI | MR | Zbl

[22] E. Billey, J. Avan, O. Babelon, Phys. Lett. A, 186 (1994), 114 | DOI | MR | Zbl

[23] N. W. Evans, Phys. Rev. A, 41 (1990), 5666 | DOI | MR