Integrable equations on $\mathbb Z$-graded Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 375-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Evolution systems with $L$$A$-pairs in $\mathbb Z$-graded Lie algebras are investigated. Some different hierarchies of integrable systems are associated with the same $L$-operator. They correspond to different decompositions of zero component of the $\mathbb Z$-graded algebra in a direct sum of two subalgebras. As the result, new examples of multi-component integrable systems are constructed.
@article{TMF_1997_112_3_a1,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {Integrable equations on $\mathbb Z$-graded {Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {375--383},
     year = {1997},
     volume = {112},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a1/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - Integrable equations on $\mathbb Z$-graded Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 375
EP  - 383
VL  - 112
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a1/
LA  - ru
ID  - TMF_1997_112_3_a1
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T Integrable equations on $\mathbb Z$-graded Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 375-383
%V 112
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a1/
%G ru
%F TMF_1997_112_3_a1
I. Z. Golubchik; V. V. Sokolov. Integrable equations on $\mathbb Z$-graded Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 375-383. http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a1/

[1] V. G. Drinfeld, V. V. Sokolov, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR

[2] A. P. Fordy, P. P. Kulish, Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[3] C. Athorne, A. P. Fordy, J. Phys. A, 20 (1987), 1377–1386 | DOI | MR | Zbl

[4] V. A. Marchenko, Nelineinye uravneniya i operatornye algebry, Naukova dumka, Kiev, 1986 | MR

[5] S. I. Svinolupov, Phys. Lett. A, 135 (1987), 32–36 | DOI | MR

[6] S. I. Svinolupov, Commun. Math. Phys., 143 (1992), 559–575 | DOI | MR | Zbl

[7] S. I. Svinolupov, Funkts. analiz i ego prilozh., 27:4 (1993), 40–53 | MR | Zbl

[8] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 | MR | Zbl

[9] S. I. Svinolupov, V. V. Sokolov, TMF, 108:3 (1996), 388–392 | DOI | MR | Zbl

[10] M. F. de Groot, T. J. Hollowood, J. L. Miramontes, Commun. Math. Phys., 145:1 (1992), 57–84 | DOI | MR | Zbl

[11] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl

[12] M. A. Semenov-Tyan-Shanskii, Funkts. analiz i ego prilozh., 17:4 (1983), 17–33 | MR

[13] I. Z. Golubchik, V. V. Sokolov, TMF, 110:3 (1997), 339–350 | DOI | MR | Zbl

[14] V. V. Sokolov, S. I. Svinolupov, Acta Appl. Math., 41 (1995), 323–339 | DOI | MR | Zbl

[15] F. A. Khalilov, E. Ya. Khruslov, Inv. Prob., 6 (1990), 193–204 | DOI | MR | Zbl

[16] O. V. Melnikov, V. N. Remeslennikov, V. A. Romankov, L. A. Skornyakov, I. P. Shestakov, Obschaya algebra, T. 1, Nauka, M., 1990 | MR

[17] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | MR

[18] A. Medina, C. R Acad. Sci. Paris, Ser. A, 286 (1978), 173–177 | MR

[19] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29–98 | MR | Zbl

[20] V. V. Sokolov, UMN, 43:5 (1988), 133–163 | MR | Zbl

[21] S. I. Svinolupov, V. V. Sokolov, UMN, 47:3 (1992), 115–147 | MR