A representation of quantum field Hamiltonian in a $p$-adic Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 355-374
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gaussian measures on infinite-dimensional $p$-adic spaces are introduced and the corresponding $L_2$-spaces of $p$-adic valued square integrable functions are constructed. Representations of the infinite-dimensional Weyl group are realized in $p$-adic $L_2$-spaces. There is a formal analogy with the usual Segal representation. But there is also a large topological difference: parameters of the $p$-adic infinite-dimensional Weyl group are defined only on some balls (these balls are additive subgroups). $p$-Adic Hilbert space representations of quantum Hamiltonians for systems with an infinite number of degrees of freedom are constructed. Many Hamiltonians with potentials which are too singular to exist as functions over reals are realized as bounded symmetric operators in $L_2$-spaces with respect to a $p$-adic Gaussian measure.
@article{TMF_1997_112_3_a0,
     author = {S. A. Albeverio and A. Yu. Khrennikov and R. Cianci},
     title = {A representation of quantum field {Hamiltonian} in a $p$-adic {Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--374},
     year = {1997},
     volume = {112},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - A. Yu. Khrennikov
AU  - R. Cianci
TI  - A representation of quantum field Hamiltonian in a $p$-adic Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 355
EP  - 374
VL  - 112
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a0/
LA  - ru
ID  - TMF_1997_112_3_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A A. Yu. Khrennikov
%A R. Cianci
%T A representation of quantum field Hamiltonian in a $p$-adic Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 355-374
%V 112
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a0/
%G ru
%F TMF_1997_112_3_a0
S. A. Albeverio; A. Yu. Khrennikov; R. Cianci. A representation of quantum field Hamiltonian in a $p$-adic Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 3, pp. 355-374. http://geodesic.mathdoc.fr/item/TMF_1997_112_3_a0/

[1] H. S. Snyder, Phys. Rev., 7 (1947), 38 | DOI | MR

[2] A. Schild, Phys. Rev., 73 (1948), 414 | DOI | MR | Zbl

[3] E. J. Hellund, K. Tanaka, Phys. Rev., 94 (1954), 192 | DOI | MR | Zbl

[4] D. I. Blokhintsev, Prostranstvo i vremya v mikrokosme, Nauka, M., 1982 | MR

[5] Yu. Manin, Quantum Field Theory, Lect. Notes in Math., 1111, 1985, 59 | DOI | MR | Zbl

[6] I. V. Volovich, Number theory as the ultimate physical theory, Preprint TH.4781/87, 1987 | MR

[7] D. Amati, “On space-time at small distances”, Sakharov Memorial Lectures, eds. L. V. Keldysh and V. Ya. Fainberg, Nova Science P. Inc., New York, 1992

[8] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A Liouville string approach to microscopic time in cosmology, Preprint CERN-TH 7000/93

[9] A. Ashtekar, Quantum gravity: a mathematical physics perspective, Preprint CGPG-93/12-2

[10] S. Doplicher, K. Fredenhagen, J. E. Roberts, Commun. Math. Phys., 172 (1995), 187 | DOI | MR | Zbl

[11] E. Beltrametti, G. Cassinelli, Found. Phys., 2 (1972), 1 | DOI | MR

[12] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[13] Yu. Manin, “Reflections on arithmetical physics”, Conformal Invariance and String Theory, eds. P. Dita and V. Georgescu, Acad. Press, Boston, 1989, 293 | DOI | MR

[14] S. Albeverio, Yu. Fenstad, R. Khoeg-Kron, T. Lindstrem, Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike, Mir, M., 1988 | MR

[15] A. Yu. Khrennikov, $p$-Adic valued distributions in mathematical physics, Kluwer Academic, Dordrecht–Boston–London, 1994 | MR | Zbl

[16] A. Robinson, Nonstandard analysis, North-Holland Publishing, Amsterdam, 1966 | MR | Zbl

[17] S. Albeverio, “Nonstandard analysis in mathematical physics”, Nonstandard Analysis and its applications, LMS Student Text, 10, ed. N. J. Cutland, Cambridge University Press, Cambridge, 1988, 182 | MR

[18] K. Mahler, Introduction to $p$-adic numbers and their functions, Cambridge University Press, Cambridge, 1973 | MR | Zbl

[19] W. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[20] A. van Rooij, Non-Archimedean functional analysis, Marcel Dekker Inc., New York, 1974 | MR

[21] S. Albeverio, J.-L. Wu, Nonstandard flat integral representation of the free Euclidean Field and a large deviation bound for the exponential interaction, Preprint SFB 237, No 246, Bochum, 1995 | MR

[22] M. Capinski, N. J. Cutland, Non standard methods for stochastic fluid dynamics, World Scientific Publ., Singapore, 1995 | MR | Zbl

[23] I. V. Volovich, Class. Quantum Gravit., 4 (1987), L83 | DOI | MR

[24] P. G. O. Freund, M. Olson, Phys. Lett. B, 199 (1987), 186 | DOI | MR

[25] P. G. O. Freund, M. Olson, E. Witten, Phys. Lett. B, 199 (1987), 191 | DOI | MR

[26] I. Ya. Aref'eva, B. Dragovic, I. V. Volovich, Phys. Lett. B, 200 (1988), 512 | DOI | MR

[27] I. Ya. Aref'eva, B. Dragovich, P. H. Frampton, I. V. Volovich, Int. J. Mod. Phys. A, 6 (1991), 4341 | DOI | MR | Zbl

[28] S. Albeverio, W. Karwowski, Stoch. Proc. Appl., 53 (1994), 1 | DOI | MR | Zbl

[29] A. Yu. Khrennikov, Phys. Lett. A, 200 (1995), 119 | DOI | MR

[30] R. Cianci, A. Yu. Khrennikov, Int. J. Theor. Phys., 18 (1994), 1217 | DOI | MR

[31] A. Yu. Khrennikov, UMN, 45:4 (1990), 79 | MR | Zbl

[32] V. S. Varadarajan, Quantization of semisimple groups and some applications, Preprint No 127, Department of Mathematics, University of Los Angeles, 1995 | MR

[33] V. S. Varadarajan, Lett. Math. Phys., 34 (1995), 319 | DOI | MR | Zbl

[34] S. Albeverio, A. Yu. Khrennikov, Representation of the Weyl group in spaces of square integrable functions with respect to $p$-adic valued Gaussian distributions, Preprint SFB-237, No 263, Inst. Math., Bochum University, 1995 | MR

[35] H. Weyl, The theory of groups and quantum mechanics, Dover, New-York, 1931 | MR

[36] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR

[37] S. Albeverio, R. Höegh-Krohn, “Quasi invariant measures, symmetric diffusion processes and quantum fields”, Proc. of Int. Colloquim on Mathematical Methods of Quantum Field Theory, Colloques Internationaux du Centre National de la Recherche Scientifique, 248, Editions CNRS, 1976, 11 | MR

[38] J. C. Baez, I. E. Segal, Z. F. Zhou, Introduction to algebraic and constructive quantum field theory, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[39] B. Saimon, Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976

[40] J. Glimm, A. Jaffe, “Boson quantum field models”, Mathematics in Contemporary Physics, Proc. Instructional Conf. (London, 1972), ed. R. F. Streater, Academic Press, N. Y., 1974, 77 | MR

[41] S. Albeverio, R. Höegh-Krohn, “Quantum fields and fields with values in groups”, Stochastic Analysis and Applications, eds. M. Pinsky, M. Dekker, Academic Press, New-York, 1984, 1 | DOI | MR

[42] S. Albeverio, Ph Blanchard, Ph. Combe, R. Höegh-Krohn, M. Sirugue, Commun. Math. Phys., 90 (1983), 329 | DOI | MR | Zbl

[43] S. Albeverio, M. Röckner, Prob. Theory Relat. Fields, 89 (1991), 347 | DOI | MR | Zbl

[44] A. Yu. Khrennikov, TMF, 66:3 (1986), 339 | MR | Zbl

[45] T. Hida, H. H. Kuo, J. Potthoff, L. Streit, White Noise, Kluwer, Dordrecht, 1993 | MR | Zbl

[46] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Birkhauser, Basel, 1992 | MR | Zbl

[47] A. Yu. Khrennikov, Zhiyuan Huang, Quantum Probability and Related Topics, 9 (1994), 273 | DOI

[48] Dzh. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR