Multidimensional Toda type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 2, pp. 254-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the base of Lie algebraic and differential geometry methods, a wide class of multidimensional nonlinear systems is obtained, and the integration scheme for such equations is proposed.
@article{TMF_1997_112_2_a4,
     author = {A. V. Razumov and M. V. Saveliev},
     title = {Multidimensional {Toda} type systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--282},
     year = {1997},
     volume = {112},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_2_a4/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - M. V. Saveliev
TI  - Multidimensional Toda type systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 254
EP  - 282
VL  - 112
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_2_a4/
LA  - ru
ID  - TMF_1997_112_2_a4
ER  - 
%0 Journal Article
%A A. V. Razumov
%A M. V. Saveliev
%T Multidimensional Toda type systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 254-282
%V 112
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_2_a4/
%G ru
%F TMF_1997_112_2_a4
A. V. Razumov; M. V. Saveliev. Multidimensional Toda type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 2, pp. 254-282. http://geodesic.mathdoc.fr/item/TMF_1997_112_2_a4/

[1] A. N. Leznov, M. V. Saveliev, Group-theoretical methods for integration of nonlinear dynamical systems, Birkhauser, Basel, 1992 | MR | Zbl

[2] A. V. Razumov, M. V. Saveliev, Commun. Anal. Geom., 2 (1994), 461–511 | DOI | MR | Zbl

[3] A. V. Razumov, M. V. Saveliev, Lie algebras, geometry and Toda type systems, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[4] J.-L. Gervais, M. V. Saveliev, Nucl. Phys. B, 453 (1995), 449–476 | DOI | MR

[5] L. A. Ferreira, J.-L. Gervais, J. S. Guillen, M. V. Saveliev, Nucl. Phys. B, 470 (1996), 236–290 | DOI | MR

[6] S. Cecotti, C. Vafa, Nucl. Phys. B, 367 (1991), 359–461 | DOI | MR | Zbl

[7] B. Dubrovin, Commun. Math. Phys., 152 (1993), 539–564 | DOI | MR | Zbl

[8] J.-L. Gervais, Y. Matsuo, Commun. Math. Phys., 152 (1993), 317–368 | DOI | MR | Zbl

[9] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 ; Lecons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, V. 1–4, Gauthier-Villars, Paris, 1887–1896 | MR

[10] L. Bianchi, Lezioni di geometria differenziale, V. 2, part 2, Zanichelli, Bologna, 1924 ; Sisteme tripli ortogonali, Opere, V. 3, Cremonese, Roma, 1955 | Zbl

[11] Yu. A. Aminov, Matem. sb., 111(153):3 (1980), 402–433 | MR | Zbl

[12] K. Tenenblat, C.-L. Terng, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl

[13] M. V. Savelev, TMF, 69 (1986), 411–419 ; ДАН СССР, 292 (1987), 582–585 | MR | Zbl | MR | Zbl

[14] M. J. Ablowitz, R. Beals, K. Tenenblat, Stud. Appl. Math., 74 (1986), 177–203 | DOI | MR | Zbl

[15] N. Burbaki, Gruppy i algebry Li, Gl. VII, VIII, Mir, M., 1978 | MR

[16] J. E. Humphreys, Linear algebraic groups, Springer, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[17] L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui, A. Wipf, Phys. Rep., 222 (1992), 1–64 | DOI | MR

[18] S. Cecotti, C. Vafa, Commun. Math. Phys., 157 (1993), 139–178 | DOI | MR | Zbl

[19] V. E. Korepin, A. G. Izergin, N. M. Bogoliubov, Quantum inverse scattering method, correlation functions, and algebraic Bethe ansatz, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[20] M. Sato, T. Miwa, M. Jimbo, “Aspects of holonomic quantum fields – isomonodromic deformation and Ising model”, Complex Analysis Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, 126, Springer, Berlin–Heidelberg–New York, 1980, 429–491 | DOI | MR