On degenerate multidimensional dispersion laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We study degeneration of multidimensional analytic at the vicinity dispersion laws given that the corresponding function of degeneracy satisfies condition (3). We prove that two-dimensional dispersion laws $\omega(p,q)$ can be degenerate with respect to the decay process $1\to2$ if and only if their asymptotic behaviour when $p$ and $q$ are small has the form (28). It is shown that the corresponding function of degeneracy is unique and its asymptotic behaviour is found.
@article{TMF_1997_112_1_a8,
     author = {D. D. Tskhakaya and E. I. Shulman},
     title = {On degenerate multidimensional dispersion laws},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/}
}
TY  - JOUR
AU  - D. D. Tskhakaya
AU  - E. I. Shulman
TI  - On degenerate multidimensional dispersion laws
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 124
EP  - 131
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/
LA  - ru
ID  - TMF_1997_112_1_a8
ER  - 
%0 Journal Article
%A D. D. Tskhakaya
%A E. I. Shulman
%T On degenerate multidimensional dispersion laws
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 124-131
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/
%G ru
%F TMF_1997_112_1_a8
D. D. Tskhakaya; E. I. Shulman. On degenerate multidimensional dispersion laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/