On degenerate multidimensional dispersion laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131
Cet article a éte moissonné depuis la source Math-Net.Ru
We study degeneration of multidimensional analytic at the vicinity dispersion laws given that the corresponding function of degeneracy satisfies condition (3). We prove that two-dimensional dispersion laws $\omega(p,q)$ can be degenerate with respect to the decay process $1\to2$ if and only if their asymptotic behaviour when $p$ and $q$ are small has the form (28). It is shown that the corresponding function of degeneracy is unique and its asymptotic behaviour is found.
@article{TMF_1997_112_1_a8,
author = {D. D. Tskhakaya and E. I. Shulman},
title = {On degenerate multidimensional dispersion laws},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--131},
year = {1997},
volume = {112},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/}
}
D. D. Tskhakaya; E. I. Shulman. On degenerate multidimensional dispersion laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/
[1] V. E. Zakharov, E. I. Schulman, Physica D, 29:3 (1988), 283–321 | DOI | MR
[2] V. E. Zakharov, E. I. Schulman, Physica D, 1:2 (1980), 191–202 | DOI
[3] V. E. Zakharov, E. I. Shulman, DAN SSSR, 283:6 (1985), 1325–1328 | MR
[4] V. E. Zakharov, Lect. Notes Phys., 153, 1983, 190–216 | DOI
[5] E. I. Shulman, TMF, 76:1 (1988), 88–99 | MR
[6] A. M. Balk, S. V. Nazarenko, V. E. Zakharov, Phys. Lett. A, 146:4 (1990), 217–221 | DOI | MR
[7] D. D. Tskhakaya, TMF, 95:1 (1993), 20–33 | MR | Zbl
[8] A. M. Balk, Phys. Lett. A, 155:1 (1991), 20–24 | DOI | MR
[9] D. D. Tskhakaya, Vyrozhdennost zakonov dispersii i mnogomernye integriruemye differentsialnye uravneniya, Dissertatsiya kand. fiz.-matem. nauk, TGU, Tbilisi, 1991