On degenerate multidimensional dispersion laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We study degeneration of multidimensional analytic at the vicinity dispersion laws given that the corresponding function of degeneracy satisfies condition (3). We prove that two-dimensional dispersion laws $\omega(p,q)$ can be degenerate with respect to the decay process $1\to2$ if and only if their asymptotic behaviour when $p$ and $q$ are small has the form (28). It is shown that the corresponding function of degeneracy is unique and its asymptotic behaviour is found.
@article{TMF_1997_112_1_a8,
author = {D. D. Tskhakaya and E. I. Shulman},
title = {On degenerate multidimensional dispersion laws},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--131},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/}
}
D. D. Tskhakaya; E. I. Shulman. On degenerate multidimensional dispersion laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a8/