Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 170-175
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The disposition order of partition elements into adjacent classes of the group representation of the Cayley tree on its finite index normal subgroups is described. For the inhomogeneous Ising model it is proved that there exist three $H_0$-periodic Gibbs distributions, where $H_0$ is a normal subgroup of finite index.
@article{TMF_1997_112_1_a12,
     author = {U. A. Rozikov},
     title = {Partition structures of the {Cayley} tree and applications for describing periodic {Gibbs} distributions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {170--175},
     year = {1997},
     volume = {112},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/}
}
TY  - JOUR
AU  - U. A. Rozikov
TI  - Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 170
EP  - 175
VL  - 112
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/
LA  - ru
ID  - TMF_1997_112_1_a12
ER  - 
%0 Journal Article
%A U. A. Rozikov
%T Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 170-175
%V 112
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/
%G ru
%F TMF_1997_112_1_a12
U. A. Rozikov. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 170-175. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/

[1] N. N. Ganikhodzhaev, DAN RUz., 1994, no. 5, 3–6 | MR

[2] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[3] N. N. Ganikhodzhaev, U. A. Rozikov, UzMZh, 1995, no. 4, 8–19 | MR

[4] Ya. G. Sinai, Teoriya fazovykh perekhodov, Nauka, M., 1980 | MR

[5] P. M. Bleher, Commun. Math. Phys., 128 (1990), 411–419 | DOI | MR | Zbl

[6] S. Katsura, M. Takizawa, Progr. Theor. Phys., 51 (1974), 82–98 | DOI