Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 170-175
The disposition order of partition elements into adjacent classes of the group representation of the Cayley tree on its finite index normal subgroups is described. For the inhomogeneous Ising model it is proved that there exist three $H_0$-periodic Gibbs distributions, where $H_0$ is a normal subgroup of finite index.
@article{TMF_1997_112_1_a12,
author = {U. A. Rozikov},
title = {Partition structures of the {Cayley} tree and applications for describing periodic {Gibbs} distributions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {170--175},
year = {1997},
volume = {112},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/}
}
TY - JOUR AU - U. A. Rozikov TI - Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 170 EP - 175 VL - 112 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/ LA - ru ID - TMF_1997_112_1_a12 ER -
U. A. Rozikov. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 170-175. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a12/
[1] N. N. Ganikhodzhaev, DAN RUz., 1994, no. 5, 3–6 | MR
[2] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl
[3] N. N. Ganikhodzhaev, U. A. Rozikov, UzMZh, 1995, no. 4, 8–19 | MR
[4] Ya. G. Sinai, Teoriya fazovykh perekhodov, Nauka, M., 1980 | MR
[5] P. M. Bleher, Commun. Math. Phys., 128 (1990), 411–419 | DOI | MR | Zbl
[6] S. Katsura, M. Takizawa, Progr. Theor. Phys., 51 (1974), 82–98 | DOI