Reduction of Hugoniot–Maslov chains for trajectories of solitary vortices of the “shallow water” equations to the Hill equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 47-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to V. Maslov's idea, many of 2D quasilinear hyperbolic systems of PDE posses only 3 types of singularities in generic positions with properties of “structure” self-similarity and stability. They are shock waves, “narrow” solitons and “square root” point singularities (solitary vortices). Their propogations are described by infinite chains of ODE that generalize the well known Hugoniot conditions for shock waves. After some resonable closing of the chain for solitary vortices of the “shallow water” equations we obtain the nonlinear system of 16 ODE, which is exactly equivalent to the (linear) Hill equation with a periodic potential. It means that in some approximation the trajectory of solitary vortex can be decribed by the Hill equation. This result can be used also for prediction of a future trajectory of the centre of solitary vortices via its observable part.
@article{TMF_1997_112_1_a1,
     author = {S. Yu. Dobrokhotov},
     title = {Reduction of {Hugoniot{\textendash}Maslov} chains for trajectories of solitary vortices of the {\textquotedblleft}shallow water{\textquotedblright} equations to the {Hill} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--66},
     year = {1997},
     volume = {112},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a1/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
TI  - Reduction of Hugoniot–Maslov chains for trajectories of solitary vortices of the “shallow water” equations to the Hill equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 47
EP  - 66
VL  - 112
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a1/
LA  - ru
ID  - TMF_1997_112_1_a1
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%T Reduction of Hugoniot–Maslov chains for trajectories of solitary vortices of the “shallow water” equations to the Hill equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 47-66
%V 112
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a1/
%G ru
%F TMF_1997_112_1_a1
S. Yu. Dobrokhotov. Reduction of Hugoniot–Maslov chains for trajectories of solitary vortices of the “shallow water” equations to the Hill equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 112 (1997) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/TMF_1997_112_1_a1/

[1] V. P. Maslov, UMN, 35:2 (1980), 252–253

[2] V. P. Maslov, “O rasprostranenii udarnoi volny v izoentropicheskom nevyazkom gaze”, Itogi nauki i tekhniki. Sovrem. problemy matematiki, 8, VINITI, M., 1977, 199–271

[3] V. P. Maslov, G. A. Omelyanov, Sibirskii matem. zhurnal, 34:5 (1983), 172–182

[4] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, TMF, 53:2 (1982), 163–180 ; 54:1 (1983), 23–37 | MR | MR | Zbl

[5] J. F. Colombeau, A. Y. Le Roux, J. Math. Phys., 219 (1988), 315–319 | DOI | MR

[6] Yu. V. Egorov, UMN, 45:5 (1990), 3–40 | MR | Zbl

[7] V. G. Danilov, V. P. Maslov, V. M. Shelkovich, “Algebry osobennostei obobschennykh reshenii strogo giperbolicheskikh sistem kvazilineinykh uravnenii pervogo poryadka”, TMF, 1997 (to appear)

[8] A. K. Pogrebkov, DAN SSSR, 244:4 (1979), 873–876 | MR | Zbl

[9] M. A. Grinfeld, Prikladnaya matematika i mekhanika, 42:5 (1978), 883–898 | MR | Zbl

[10] P. Prasad, R. Ravindran, Appl. Math. Lett., 3:2 (1990), 107–109 | DOI | MR | Zbl

[11] Atmosfera. Spravochnik, Gidrometeoizdat, L., 1991

[12] F. V. Dolzhanskii, V. A. Krymov, D. Yu. Manin, UFN, 160:7 (1990), 1–47 | DOI

[13] A. P. Khain, G. G. Sutyrin, Tropicheskie tsiklony i ikh vzaimodeistvie s okeanom, Gidrometeoizdat, L., 1983

[14] V. A. Gordin, Matematicheskie problemy gidrodinamicheskogo prognoza pogody, Gidrometeoizdat, L., 1987 | MR

[15] E. B. Gledzer, F. V. Dolzhanskii, A. M. Obukhov, Sistemy gidrodinamicheskogo tipa i ikh prilozheniya, Nauka, M., 1981 | MR | Zbl

[16] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[17] V. V. Bulatov, Yu. V. Vladimirov, V. G. Danilov, S. Yu. Dobrokhotov, DAN, 338 (1994), 102–105 | MR | Zbl

[18] V. V. Bulatov, Yu. V. Vladimirov, V. G. Danilov, S. Yu. Dobrokhotov, Rasprostranenie tochechnykh algebraicheskikh osobennostei dlya nelineinykh uravnenii gidrodinamiki i modelirovaniya mezomasshtabnykh vikhrei v neodnorodnoi atmosfere na osnove gipotezy V. P. Maslova, Preprint No 552, Institut problem mekhaniki RAN, M., 1995 | MR

[19] M. I. Vishik, A. V. Fursikov, Matematicheskie problemy statisticheskoi mekhaniki, Nauka, M., 1980 | MR

[20] V. N. Zhikharev, O neobkhodimykh usloviyakh suschestvovaniya i edinstvennosti tipa resheniya so slaboi rasprostranyayuscheisya osobennostyu, sosredotochennoi v tochke, dlya uravnenii gidrodinamiki v sluchae dvukh prostranstvennykh peremennykh, Dep. 8148–B86, VINITI, M., 1986

[21] V. V. Bulatov, V. G. Danilov, S. Yu. Dobrokhotov, Yu. V. Vladimirov, “Hugoniot and Maslov Chains for Solitary Vortex Solutions to Equations of “Shallow” Water, the Hill Equations and Trajectories of a “Typhoon Eye””, Proceedings of the II Int. Conf. “Asymptotic Methods in Mechanics” (St. Petersburg, 1996), Kluwer (to appear) | MR | Zbl

[22] S. Yu. Dobrokhotov, UMN, 51:6 (1996), 203–204 | DOI | MR | Zbl

[23] V. M. Babich, Matem. sb., 52:2 (1960), 709–738 ; Алгебра и анализ, 3:5 (1991), 1–37 | MR | Zbl | MR

[24] S. Yu. Dobrokhotov, V. P. Maslov, “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhniki. Sovrem. problemy matematiki, 15, VINITI, M., 1980, 3–94 | MR

[25] H. Flashka, M. G. Forest, D. W. McLaughlin, Commun. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR

[26] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl

[27] M. G. Krein, DAN SSSR, 73:3 (1950), 445–448 | MR | Zbl

[28] I. M. Gelfand, V. B. Lidskii, UMN, 10:1 (1955), 3–40 | MR | Zbl

[29] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[30] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 1995 | MR