Renormgroup symmetries in problems of nonlinear geometrical optics
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 369-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation are constructed. With the help of renormgroup symmetries new exact and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of a laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium.
@article{TMF_1997_111_3_a4,
     author = {V. F. Kovalev},
     title = {Renormgroup symmetries in problems of nonlinear geometrical optics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--388},
     year = {1997},
     volume = {111},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a4/}
}
TY  - JOUR
AU  - V. F. Kovalev
TI  - Renormgroup symmetries in problems of nonlinear geometrical optics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 369
EP  - 388
VL  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a4/
LA  - ru
ID  - TMF_1997_111_3_a4
ER  - 
%0 Journal Article
%A V. F. Kovalev
%T Renormgroup symmetries in problems of nonlinear geometrical optics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 369-388
%V 111
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a4/
%G ru
%F TMF_1997_111_3_a4
V. F. Kovalev. Renormgroup symmetries in problems of nonlinear geometrical optics. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 369-388. http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a4/

[1] D. V. Shirkov, “Several topics on Renormgroup Theory”, Renormalization group–91, Proc. of 2-nd Intern. Conf. (Sept. 1991, Dubna, USSR), eds. D. V. Shirkov, V. B. Priezzhev, World Scientific, Singapore, 1992, 1–10 | DOI

[2] D. V. Shirkov, Int. J. Mod. Phys. C, 6:6 (1995), 503 | DOI | MR | Zbl

[3] V. F. Kovalev, V. V. Pustovalov, D. V. Shirkov, Gruppovoi analiz i renormgruppa, Soobschenie OIYaI, R5-95-447, OIYaI, Dubna, 1995 | MR

[4] V. F. Kovalev, V. V. Pustovalov, D. V. Shirkov, Group analysis and renormgroup symmetries, Preprint JINR, E5-96-209, JINR, Dubna, 1996 | MR

[5] S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, ZhETF, 50 (1966), 1537 | MR

[6] A. V. Gurevich, A. B. Shvartsburg, Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere, Nauka, M., 1973

[7] A. B. Shvartsburg, “Nestatsionarnoe rasprostranenie lokalizovannykh volnovykh polei v nelineinoi dispergiruyuschei srede”, Nelineinye elektromagnitnye volny, ed. P. Uslengi, Mir, M., 1983, Gl. 6

[8] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[9] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[10] V. F. Kovalev, J. Nonlin. Math. Phys., 3:3–4 (1996), 351 | DOI | MR | Zbl

[11] V. F. Kovalev, V. V. Pustovalov, “Group and renormgroup symmetry of a simple model for nonlinear phenomena in optics, gas dynamics and plasma theory”, Mathematical and Computer Modelling, predstavlena v 1995 g. | MR | Zbl

[12] V. F. Kovalev, V. V. Pustovalov, S. I. Senashov, Diff. uravneniya, 29:10 (1993), 1751 | MR | Zbl

[13] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Metody vozmuschenii v gruppovom analize”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 34, VINITI, M., 1989, 85–147 | MR

[14] J. Sherring, G. Prince, DIMSYM – Symmetry determination and linear differential equations package, Preprint, Department of Mathematics, La Trobe University, Melbourne, Australia, 1992