Stochastic wave equation simulating the behavior of quantities with the averages obeying the set of ordinary first order differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 356-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of stochastic waves for stochastic vector quantities satisfying the set of ordinary first order differential equations is presented. The equation for wave functions corresponding to a differential model for mean values is suggested. The relationship between this equation and Liouville's equation is considered. The analog of Ehrenfest's theorem is proved. The ordinary first order differential equation for dispersion is obtained. The problems of interpretation and determination of the analog of Planck's constant are disscussed. The conditions for increasing and decreasing of dispersion are found.
@article{TMF_1997_111_3_a3,
     author = {I. A. Solov'ev},
     title = {Stochastic wave equation simulating the behavior of quantities with the averages obeying the set of ordinary first order differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {356--368},
     year = {1997},
     volume = {111},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a3/}
}
TY  - JOUR
AU  - I. A. Solov'ev
TI  - Stochastic wave equation simulating the behavior of quantities with the averages obeying the set of ordinary first order differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 356
EP  - 368
VL  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a3/
LA  - ru
ID  - TMF_1997_111_3_a3
ER  - 
%0 Journal Article
%A I. A. Solov'ev
%T Stochastic wave equation simulating the behavior of quantities with the averages obeying the set of ordinary first order differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 356-368
%V 111
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a3/
%G ru
%F TMF_1997_111_3_a3
I. A. Solov'ev. Stochastic wave equation simulating the behavior of quantities with the averages obeying the set of ordinary first order differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 356-368. http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a3/

[1] A. Einshtein, M. Smolukhovskii, Brounovskoe dvizhenie, ONTI, M.–L., 1936

[2] P. Langevin, C. R. Acad. Sci., 146 (1908), 530 | Zbl

[3] G. Khaken, Sinergetika. Ierarkhii neustoichivostei v samoorganizuyuschikhsya sistemakh i ustroistvakh, Mir, M., 1985 | MR

[4] A. D. Fokker, Ann. Phys. (Leipzig), 43 (1915), 310

[5] M. Plank, Termodinamika. Teoriya izlucheniya i kvantovaya teoriya. Teoriya otnositelnosti. Izbr. trudy, Nauka, M., 1975 | MR

[6] A. N. Kolmogorov, Math. Annal., 104 (1931), 415 | DOI | MR | Zbl

[7] K. Ito, Veroyatnostnye protsessy, Vyp. 1, IL, M., 1960 | MR

[8] R. L. Stratonovich, Izbrannye voprosy teorii fluktuatsii v radiotekhnike, Sov. radio, M., 1961 | Zbl

[9] L. de Broil, Sootnoshenie neopredelennostei Geizenberga i veroyatnostnaya interpretatsiya volnovoi mekhaniki, Mir, M., 1986 | MR

[10] P. Erenfest, Otnositelnost. Kvanty. Statistika, Nauka, M., 1972 | MR

[11] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[12] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl

[13] G. Nicolis, I. Prigogine, Exploring Complexity. An introduction, W. H. Freeman and Company, New York, 1989

[14] I. A. Solovev, Vestn. MEI, 1995, no. 6, 109–118

[15] I. A. Solovev, Sb. nauchn. tr. MGOPI, no. 12, 1996, 81–92