Equilibrium configuration of black holes and inverse scattering method
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 345-355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse scattering method is applied for investigation of equilibrium configuration of black holes. Basing on the study of the boundary problem corresponding to this configuration it is shown that any axially symmetric stationary solution of Einstein equations with disconnected event horison must be contained in the class of Belinskiy–Zaharov solutions. The relations between angular momenta and angular velocities of the black holes are derived.
@article{TMF_1997_111_3_a2,
     author = {G. G. Varzugin},
     title = {Equilibrium configuration of black holes and inverse scattering method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--355},
     year = {1997},
     volume = {111},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a2/}
}
TY  - JOUR
AU  - G. G. Varzugin
TI  - Equilibrium configuration of black holes and inverse scattering method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 345
EP  - 355
VL  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a2/
LA  - ru
ID  - TMF_1997_111_3_a2
ER  - 
%0 Journal Article
%A G. G. Varzugin
%T Equilibrium configuration of black holes and inverse scattering method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 345-355
%V 111
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a2/
%G ru
%F TMF_1997_111_3_a2
G. G. Varzugin. Equilibrium configuration of black holes and inverse scattering method. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 345-355. http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a2/

[1] B. Carter, “Black hole equilibrium states”, Black Hole, eds. C. De Witt and B. S. De Witt, Gordon and Breach, N. Y., 1973 | MR

[2] D. C. Robinson, Phys. Rev. Lett., 34 (1975), 905 | DOI

[3] G. Weinstein, Trans. Am. Math. Soc., 343 (1994), 899 | DOI | MR | Zbl

[4] Y. Li, G. Tian, Manuscripta Math., 73 (1991), 83 | DOI | MR | Zbl

[5] V. A. Belinskii, V. E. Zakharov, ZhETF, 75 (1978), 1955 | MR

[6] V. A. Belinskii, V. E. Zakharov, ZhETF, 77 (1979), 3 | MR

[7] G. Weinstein, Commun. Pure Appl. Math., 43 (1990), 903 | DOI | MR | Zbl

[8] G. Weinstein, Commun. Pure Appl. Math., 45 (1992), 1183 | DOI | MR | Zbl

[9] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl