Integral equations for radial distribution functions of multicomponent mixtures on the basis of phase space scaling transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 473-482 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Scaling transformation of the phase space of a mixture component is shown to correspond to a density virtual variation of the component of a thermodynamic system. The obtained results are used to develop a technique of constructing different kinds of the generating functional to produce systems of integral equations for mixtures radial distribution functions. Empirical Tayt's equation is as well as a system of integral equations for radial distribution functions are obtained. The well-known Percus–Yevic equation and systems of equations of hypernetted chains follow from the latter equations.
@article{TMF_1997_111_3_a12,
     author = {L. A. Bulavin and V. M. Sysoev and I. A. Fakhretdinov},
     title = {Integral equations for radial distribution functions of multicomponent mixtures on the basis of phase space scaling transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--482},
     year = {1997},
     volume = {111},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a12/}
}
TY  - JOUR
AU  - L. A. Bulavin
AU  - V. M. Sysoev
AU  - I. A. Fakhretdinov
TI  - Integral equations for radial distribution functions of multicomponent mixtures on the basis of phase space scaling transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 473
EP  - 482
VL  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a12/
LA  - ru
ID  - TMF_1997_111_3_a12
ER  - 
%0 Journal Article
%A L. A. Bulavin
%A V. M. Sysoev
%A I. A. Fakhretdinov
%T Integral equations for radial distribution functions of multicomponent mixtures on the basis of phase space scaling transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 473-482
%V 111
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a12/
%G ru
%F TMF_1997_111_3_a12
L. A. Bulavin; V. M. Sysoev; I. A. Fakhretdinov. Integral equations for radial distribution functions of multicomponent mixtures on the basis of phase space scaling transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 3, pp. 473-482. http://geodesic.mathdoc.fr/item/TMF_1997_111_3_a12/

[1] J. Tang, B. Lu, Mol. Phys., 84 (1995), 88 | DOI | MR

[2] J. Anta, G. Kahl, Mol. Phys., 84 (1995), 1273 | DOI

[3] R. Chang, H. Rurstyn, J. Sengers, Phys. Rev. A, 19 (1979), 866 | DOI

[4] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. I, Mir, M., 1978 | MR

[5] V. M. Sysoev, TMF, 55:2 (1983), 305

[6] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[7] T. Khill, Statisticheskaya mekhanika, Izd-vo in. lit., M., 1960 | MR

[8] E. W. Grundke, D. Henderson, R. D. Murphy, Can. J. Phys., 51 (1973), 1216 | DOI

[9] N. S. Kasimov, V. M. Sysoev, ZhFKh, 65 (1991), 819 | MR

[10] N. P. Kovalenko, I. Z. Fisher, UFN, 108 (1972), 209 | DOI

[11] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Nauka, M., 1962

[12] I. A. Fakhretdinov, ZhFKh, 71 (1997), 226

[13] J. R. Macdonald, Rev. Mod. Phys., 41 (1969), 3316 | DOI

[14] A. Z. Golik, I. I. Adamenko, V. V. Varetskii, I. I. Radchenko, S. F. Sokolovskaya, Fizika zhidkogo sostoyaniya, no. 4, Izd-vo Kievskogo un-ta, Kiev, 1976, 91

[15] Kh. I. Mogel, A. V. Chalyi, UFZh, 22 (1977), 100

[16] Kh. I. Mogel, A. V. Chalyi, Yu. I. Shimanskii, Fizika zhidkogo sostoyaniya, no. 4, Izd-vo Kievskogo un-ta, Kiev, 1976, 76

[17] A. Z. Golik, V. M. Sysoev, TVT, 21 (1983), 454