Selfconsistent random phase approximation for hot finite Fermi-systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 279-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using a formalism of thermofield dynamics a new approach with the account of the influence of temperature and collective motion parameters on a mean field in hot finite Fermi-systems like atomic nuclei and metallic clusters is elaborated. Within the approach Pauli principle effects are considered in more correct way than in the standard termal random phase approximation.
@article{TMF_1997_111_2_a8,
     author = {A. I. Vdovin and D. S. Kosov and W. Nawrocka},
     title = {Selfconsistent random phase approximation for hot finite {Fermi-systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--288},
     year = {1997},
     volume = {111},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/}
}
TY  - JOUR
AU  - A. I. Vdovin
AU  - D. S. Kosov
AU  - W. Nawrocka
TI  - Selfconsistent random phase approximation for hot finite Fermi-systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 279
EP  - 288
VL  - 111
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/
LA  - ru
ID  - TMF_1997_111_2_a8
ER  - 
%0 Journal Article
%A A. I. Vdovin
%A D. S. Kosov
%A W. Nawrocka
%T Selfconsistent random phase approximation for hot finite Fermi-systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 279-288
%V 111
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/
%G ru
%F TMF_1997_111_2_a8
A. I. Vdovin; D. S. Kosov; W. Nawrocka. Selfconsistent random phase approximation for hot finite Fermi-systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/

[1] U. Umedzava, Kh. Matsumoto, M. Tatiki, Termopolevaya dinamika i kondensirovannye sostoyaniya, Mir, M., 1985

[2] T. Hatsuda, Nucl. Phys. A, 492 (1989), 187 | DOI

[3] K. Tanabe, Phys. Rev. C, 37 (1988), 2802 | DOI

[4] O. Civitarese, A. I. DePaoli, Z. Phys. A, 344 (1993), 243 | DOI

[5] D. S. Kosov, A. I. Vdovin, Mod. Phys. Lett. A, 9 (1994), 1735 | DOI

[6] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[7] Ken-ji Hara, Progr. Theor. Phys., 32 (1964), 88 | DOI | MR

[8] D. J. Rowe, Rev. Mod. Phys., 40 (1968), 1283 | DOI

[9] A. V. Avdeenkov, D. S. Kosov, A. I. Vdovin, Mod. Phys. Lett. A, 11 (1996), 853 | DOI

[10] M. Yamamura et al., Progr. Theor. Phys., 83 (1990), 749 | DOI