Selfconsistent random phase approximation for hot finite Fermi-systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 279-288
Cet article a éte moissonné depuis la source Math-Net.Ru
By using a formalism of thermofield dynamics a new approach with the account of the influence of temperature and collective motion parameters on a mean field in hot finite Fermi-systems like atomic nuclei and metallic clusters is elaborated. Within the approach Pauli principle effects are considered in more correct way than in the standard termal random phase approximation.
@article{TMF_1997_111_2_a8,
author = {A. I. Vdovin and D. S. Kosov and W. Nawrocka},
title = {Selfconsistent random phase approximation for hot finite {Fermi-systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--288},
year = {1997},
volume = {111},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/}
}
TY - JOUR AU - A. I. Vdovin AU - D. S. Kosov AU - W. Nawrocka TI - Selfconsistent random phase approximation for hot finite Fermi-systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 279 EP - 288 VL - 111 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/ LA - ru ID - TMF_1997_111_2_a8 ER -
A. I. Vdovin; D. S. Kosov; W. Nawrocka. Selfconsistent random phase approximation for hot finite Fermi-systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a8/
[1] U. Umedzava, Kh. Matsumoto, M. Tatiki, Termopolevaya dinamika i kondensirovannye sostoyaniya, Mir, M., 1985
[2] T. Hatsuda, Nucl. Phys. A, 492 (1989), 187 | DOI
[3] K. Tanabe, Phys. Rev. C, 37 (1988), 2802 | DOI
[4] O. Civitarese, A. I. DePaoli, Z. Phys. A, 344 (1993), 243 | DOI
[5] D. S. Kosov, A. I. Vdovin, Mod. Phys. Lett. A, 9 (1994), 1735 | DOI
[6] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR
[7] Ken-ji Hara, Progr. Theor. Phys., 32 (1964), 88 | DOI | MR
[8] D. J. Rowe, Rev. Mod. Phys., 40 (1968), 1283 | DOI
[9] A. V. Avdeenkov, D. S. Kosov, A. I. Vdovin, Mod. Phys. Lett. A, 11 (1996), 853 | DOI
[10] M. Yamamura et al., Progr. Theor. Phys., 83 (1990), 749 | DOI