Supertraces on the algebras of observables of the rational Calogero models related to the classical root systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 252-262
Cet article a éte moissonné depuis la source Math-Net.Ru
We find a complete set of supertraces on the algebra $H_{W(\mathbf R)}(\nu)$, the algebra of observables of the rational Calogero model with harmonic interaction based on the classical root systems $\mathbf R$ of $B_N$, $C_N$, and $D_N$ types. These results extend the results known for the case $A_{N-1}$. It is shown that $H_{W(\mathbf R)}(\nu)$ admits $q(\mathbf R)$ independent supertraces where $q(B_N)=q(C_N)$ is a number of partitions of $N$ into a sum of positive integers and $q(D_N)$ is a number of partitions of $N$ into a sum of positive integers with even number of even integers.
@article{TMF_1997_111_2_a6,
author = {S. E. Konstein},
title = {Supertraces on the algebras of observables of the rational {Calogero} models related to the classical root systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {252--262},
year = {1997},
volume = {111},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a6/}
}
TY - JOUR AU - S. E. Konstein TI - Supertraces on the algebras of observables of the rational Calogero models related to the classical root systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 252 EP - 262 VL - 111 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a6/ LA - ru ID - TMF_1997_111_2_a6 ER -
%0 Journal Article %A S. E. Konstein %T Supertraces on the algebras of observables of the rational Calogero models related to the classical root systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1997 %P 252-262 %V 111 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a6/ %G ru %F TMF_1997_111_2_a6
S. E. Konstein. Supertraces on the algebras of observables of the rational Calogero models related to the classical root systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 252-262. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a6/
[1] A. Polychronakos, Phys. Rev. Lett., 69 (1992), 703 | DOI | MR | Zbl
[2] L. Brink, H. Hansson, M. A. Vasiliev, Phys. Lett. B, 286 (1992), 109 | DOI | MR
[3] F. Calogero, J. Math. Phys., 10 (1969), 2191 ; 2197 ; 12 (1971), 419 | DOI | MR | DOI | MR
[4] S. E. Konstein, M. A. Vasiliev, ; J. Math. Phys., 37 (1996), 2872 E-print Hep-th/9512038 | DOI | MR | Zbl
[5] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313 | DOI | MR
[6] L. Brink, M. A. Vasiliev, Mod. Phys. Lett. A, 8 (1993), 3585 | DOI | MR | Zbl
[7] C. F. Dunkl, Trans. Am. Math. Soc., 311 (1989), 167 | DOI | MR | Zbl
[8] M. A. Vasilev, Pisma v ZhETF, 50 (1989), 344 ; M. A. Vasiliev, Int. J. Mod. Phys. A, 6 (1991), 1115 | MR | DOI | MR | Zbl