Reonomic homogenious contact transformations and path reparametrization in path integrals over quasi-measures
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 234-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In path integrals over quasi-measures for linear parabolic fourth order differential equations with the explicit dependence of coefficients on time the reonomic homogeneous contact transformations and path reparametrizations are considered. An integral relation between Green's functions for the fourth order differential equations being in correspondence is found. Differential operator of the transformed equation coincides in the particular case with the conformally covariant Bol operator, that is well-known in exactly solvable and conformal models.
@article{TMF_1997_111_2_a4,
     author = {S. N. Storchak},
     title = {Reonomic homogenious contact transformations and path reparametrization in path integrals over quasi-measures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--241},
     year = {1997},
     volume = {111},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a4/}
}
TY  - JOUR
AU  - S. N. Storchak
TI  - Reonomic homogenious contact transformations and path reparametrization in path integrals over quasi-measures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 234
EP  - 241
VL  - 111
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a4/
LA  - ru
ID  - TMF_1997_111_2_a4
ER  - 
%0 Journal Article
%A S. N. Storchak
%T Reonomic homogenious contact transformations and path reparametrization in path integrals over quasi-measures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 234-241
%V 111
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a4/
%G ru
%F TMF_1997_111_2_a4
S. N. Storchak. Reonomic homogenious contact transformations and path reparametrization in path integrals over quasi-measures. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 234-241. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a4/

[1] S. N. Storchak, TMF, 93 (1992), 17–31 | MR | Zbl

[2] S. N. Storchak, TMF, 93 (1992), 375–385 | MR

[3] V. Yu. Krylov, DAN SSSR, 132 (1960), 1254–1257 | MR | Zbl

[4] K. J. Hochberg, Ann. Prob., 6 (1978), 433–458 | DOI | MR | Zbl

[5] M. Motoo, “An analogue to the stochastic integral for $\partial/\partial t=-\Delta^4$”, Stoch. Analysis and Application, Adv. Prob. Related Topics, 7, ed. M. Pinsky, Marcel Dekker, N. Y., 1984 | MR

[6] K. Nishioka, Japan. J. Math., 11 (1985), 59–102 ; J. Math. Soc. Japan, 39 (1978), 209–231 | MR | Zbl | DOI | MR

[7] F. Steiner, Phys. Lett. A, 106 (1984), 356–362 ; C. Grosche, F. Steiner, Table of Feynmann Path Integrals, Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1995 | DOI | MR | MR

[8] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl

[9] S. N. Storchak, Phys. Lett. A, 135 (1989), 77–85 | DOI | MR

[10] G. Bol, Abhandl. Math. Sem. Hamburger Univ., 16 (1949), 1 ; B. Gustafsson, J. Peetre, Nagoya Math. J., 116 (1989), 63 | DOI | MR | Zbl | DOI | MR | Zbl

[11] F. Gieres, Conformally covariant operators on Riemann surfaces (with application to conformal and integrable models), Preprint CERN-TH. 5985/91 | MR