@article{TMF_1997_111_2_a2,
author = {G. E. Arutyunov and S. A. Frolov and L. O. Chekhov},
title = {$R$-matrix quantization of the elliptic {Ruijsenaars{\textendash}Schneider} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {182--217},
year = {1997},
volume = {111},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a2/}
}
TY - JOUR AU - G. E. Arutyunov AU - S. A. Frolov AU - L. O. Chekhov TI - $R$-matrix quantization of the elliptic Ruijsenaars–Schneider model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 182 EP - 217 VL - 111 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a2/ LA - ru ID - TMF_1997_111_2_a2 ER -
G. E. Arutyunov; S. A. Frolov; L. O. Chekhov. $R$-matrix quantization of the elliptic Ruijsenaars–Schneider model. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 182-217. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a2/
[1] O. Babelon, C. M. Viallet, Phys. Lett. B, 237 (1990), 411 | DOI | MR
[2] J. Avan, M. Talon, Phys. Lett. B, 303 (1993), 33–37 | DOI | MR
[3] Zh. Avan, O. Babelon, M. Talon, Algebra i analiz, 6:2 (1994), 67–89 | MR
[4] E. K. Sklyanin, Algebra i analiz, 6:2 (1994), 227–237 | MR | Zbl
[5] H. W. Braden, T. Suzuki, Lett. Math. Phys., 30 (1994), 147 | DOI | MR | Zbl
[6] J. Avan, G. Rollet, The classical $r$-matrix for the relativistic Ruijsenaars–Schneider system, Preprint BROWN-HET-1014, 1995 | MR
[7] Yu. B. Suris, Why are the rational and hyperbolic Ruijsenaars–Schneider hierarchies governed by the same $R$-matrix as the Calogero–Moser ones?, E-print hep-th/9602160 | MR
[8] F. W. Nijhoff, V. B. Kuznetsov, E. K. Sklyanin, O. Ragnisco, Dynamical $r$-matrix for the elliptic Ruijsenaars–Schneider model, E-print solv-int/9603006
[9] Yu. B. Suris, Elliptic Ruijsenaars–Schneider and Calogero–Moser hierarchies are governed by the same $r$-matrix, E-print solv-int/9603011
[10] S. N. Ruijsenaars, Commun. Math. Phys., 110 (1987), 191 | DOI | MR | Zbl
[11] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71 (1981), 313 | DOI | MR
[12] A. Gorsky, N. Nekrasov, Nucl. Phys. B, 414 (1994), 213 ; 436 (1995), 582 ; A. Gorsky, Integrable many body systems in the field theories, Prepint UUITP-16/94, 1994 | DOI | MR | Zbl | DOI | MR | Zbl
[13] G. E. Arutyunov, P. B. Medvedev, Phys. Lett. A, 223 (1996), 66–74 | DOI | MR | Zbl
[14] J. Avan, O. Babelon, E. Billey, The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems, Preprint PAR LPTHE 95-25, May 1995 | MR
[15] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, E-print hep-th/9407154 | MR
[16] J. L. Gervais, A. Neveu, Nucl. Phys. B, 238 (1984), 125 | DOI | MR
[17] O. Babelon, D. Bernard, E. Billey, A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations, Preprint PAR LPTHE 95-51 | MR
[18] G. E. Arutyunov, S. A. Frolov, Quantum dynamical $R$-matrices and quantum Frobenius group, E-print q-alg/9610009 | MR
[19] G. E. Arutyunov, S. A. Frolov, P. B. Medvedev, Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double, E-print hep-th/9607170 | MR
[20] G. E. Arutyunov, S. A. Frolov, P. B. Medvedev, Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group, E-print hep-th/9608013 | MR
[21] K. Hasegawa, Ruijsenaars' commuting difference operators as commuting transfer matrices, E-print q-alg/9512029 | MR
[22] A. A. Belavin, Nucl. Phys. B, 180 (1981), 189–200 | DOI | MR | Zbl
[23] P. I. Etingof, I. B. Frenkel, Central extensions of current groups in two dimensions, E-print hep-th/9303047 | MR
[24] F. Falceto, K. Gawedski, Commun. Math. Phys., 159 (1994), 549 | DOI | MR | Zbl
[25] L. D. Faddeev, “Integrable models in $(1+1)$-dimensional quantum field theory”, Recent advances in field theory and statistical mechanics, Les Houches Summer School Proc. Session XXXIX (1982), eds. J. B. Zuber, R. Stora, Elsvier Sci. Publ., 1984, 561 | MR
[26] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable quantum field theories, eds. J. Hietarinta, C. Montonen; Lect. Notes. Phys., 51, 1982, 61 | DOI
[27] M. P. Richey, C. A. Tracy, J. Stat. Phys., 42 (1986), 311–348 | DOI | MR
[28] Y. Quano, A. Fujii, Mod. Phys. Lett. A, 8:17 (1993), 1585–1597 | DOI | MR | Zbl
[29] K. Hasegawa, J. Phys. A, 26 (1993), 3211–3228 | DOI | MR | Zbl
[30] R. J. Baxter, Ann. Phys., 76 (1973), 1–24 ; 25–47 ; 48–71 | DOI | Zbl | Zbl | Zbl
[31] M. Jimbo, T. Miwa, M. Okado, Lett. Math. Phys., 14 (1987), 123–131 ; Nucl. Phys. B, 300 (1988), 74–108 | DOI | MR | Zbl | DOI | MR
[32] K. Hasegawa, J. Math. Phys., 35:11 (1994), 6158–6171 | DOI | MR | Zbl
[33] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 ; 17:4, 34–48 | MR | Zbl | MR | Zbl
[34] I. M. Krichever, O. Babelon, E. Billey, M. Talon, Spin generalization of Calogero–Moser system and the matrix KP equation, E-print hep-th/9411160 | MR
[35] N. Nekrasov, Holomorphic bundles and many-body systems, E-print hep-th/9503157 | MR
[36] B. Enriquez, V. Rubtsov, Math. Research Lett., 3:3 (1996), 343–358 | DOI | MR
[37] I. M. Krichever, A. V. Zabrodin, Spin generalizations of the Ruijsenaars–Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, E-print hep-th/9505039 | MR
[38] V. B. Kuznetsov, E. K. Sklyanin, Separation of variables for $A_2$ Ruijsenaars model and new integral representation for $A_2$ Macdonald polinomials, E-print q-alg/9602023 | MR