Correlated coherent states of two-dimensional quantum oscillator with nonstationary mode coupling
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 304-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The phenomena of squeezing and correlation of quantum fluctuations in the correlated coherent states of two oscillatory modes with a parametric coupling of coordinates are investigated. Under the conditions of strong mode coupling both the excitation and strong correlation of quantum fluctuations are discovered. The matrix of dispersions and covariances of dynamical variables is found explicitly with the use of the method of linear quantum integrals of motion.
@article{TMF_1997_111_2_a10,
     author = {M. E. Veisman and S. Yu. Kalmykov},
     title = {Correlated coherent states of two-dimensional quantum oscillator with nonstationary mode coupling},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--311},
     year = {1997},
     volume = {111},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a10/}
}
TY  - JOUR
AU  - M. E. Veisman
AU  - S. Yu. Kalmykov
TI  - Correlated coherent states of two-dimensional quantum oscillator with nonstationary mode coupling
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 304
EP  - 311
VL  - 111
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a10/
LA  - ru
ID  - TMF_1997_111_2_a10
ER  - 
%0 Journal Article
%A M. E. Veisman
%A S. Yu. Kalmykov
%T Correlated coherent states of two-dimensional quantum oscillator with nonstationary mode coupling
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 304-311
%V 111
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a10/
%G ru
%F TMF_1997_111_2_a10
M. E. Veisman; S. Yu. Kalmykov. Correlated coherent states of two-dimensional quantum oscillator with nonstationary mode coupling. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 304-311. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a10/

[1] C. M. Caves, B. L. Schumaker, Phys. Rev. A, 31 (1985), 3068 | DOI | MR

[2] O. Castaños, R. Lopez-Pena, V. I. Man'ko, Phys. Rev. A, 50 (1994), 5209 | DOI

[3] “Squeezed States of the Electromagnetic Field”, J. Opt. Soc. Amer. B, 4:10 (1987)

[4] D. F. Walls, Nature, 306 (1983), 141 | DOI

[5] V. V. Dodonov, E. V. Kurmyshev, V. I. Man'ko, Phys. Lett. A, 79 (1980), 150 | DOI | MR

[6] L. A. Syurakshina, V. S. Yarunin, TMF, 92 (1992), 158

[7] L. A. Siurakshina, V. S. Yarunin, Phys. Lett. A, 164 (1992), 167 | DOI

[8] E. A. Kochetov, V. S. Yarunin, Physica Scripta, 51 (1995), 46 | DOI | MR | Zbl

[9] C. F. Lo, Phys. Lett. A, 162 (1992), 299 | DOI | Zbl

[10] Leehwa Yeh, O. V. Man'ko, Phys. Lett. A, 189 (1994), 268 | DOI | MR | Zbl

[11] L. A. Lugiato, A. Gatti, Phys. Rev. Lett., 70 (1993), 3868 | DOI

[12] V. V. Dodonov, O. V. Manko, V. I. Manko, Tr. FIAN, 191, 1989, 224

[13] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979, S. 72 ; I. A. Malkin, V. I. Man'ko, Phys. Lett. A, 32 (1970), 243 | MR | DOI

[14] V. V. Dodonov, V. I. Manko, Tr. FIAN, 183, 1987, 182 | MR

[15] R. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1982, S. 362 ; J. von Neuman, Math. Annal. B, 104 (1931), 570 | MR | DOI | MR | Zbl

[16] R. J. Glauber, Phys. Rev., 131 (1963), 2766 | DOI | MR

[17] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, Phys. Rev. A, 50 (1994), 813 | DOI