Chain of BBGKI equations for bimolecular chemical reactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 163-178
Cet article a éte moissonné depuis la source Math-Net.Ru
Dynamically proved statistical theory of moderately dense gases developed by Bogoliubov andothers is generalized to the case of bimolecular chemical reactions in gas. The corresponding chain of BBGKI equations is derived and used to obtain the kinetic equations for one-molecular distribution functions in the approximation of bimolecular as well as three-molecular interactions.
@article{TMF_1997_111_2_a0,
author = {R. L. Stratonovich},
title = {Chain of {BBGKI} equations for bimolecular chemical reactions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--178},
year = {1997},
volume = {111},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a0/}
}
R. L. Stratonovich. Chain of BBGKI equations for bimolecular chemical reactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/TMF_1997_111_2_a0/
[1] R. L. Stratonovich, ZhETF, 98 (1990), 1233 | MR
[2] R. L. Stratonovich, ZhETF, 106 (1994), 753
[3] N. N. Bogolyubov, Problemy dinamicheskii teorii v statisticheskoi fizike, GITTL, M.–L., 1946
[4] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 1. Razdel 3.4, Mir, M., 1978 | MR
[5] M. S. Green, J. Chem. Phys., 26 (1956), 836 | DOI
[6] E. G. D. Cohen, Physica, 28 (1962), 183 | DOI | MR
[7] S. Cho, Dzh. Ulenbek, Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, Mir, M., 1965