Finiteness of discrete spectrum of three particle Schr'́odinger operator on the lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 1, pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Hamiltonian system of three identical quantum particles on a lattice interacting via pairwise contact attracting potentials is discussed. Finiteness of three particle bound states of the three dimensional Schrödinger operator is proved under the condition that operators describing two particle subsystems do not have virtual levels. For high dimensions $(\nu\geq5)$ the finiteness of three particle bound states is also proved under the presence of virtual levels.
@article{TMF_1997_111_1_a6,
     author = {Zh. I. Abdullaev and S. N. Lakaev},
     title = {Finiteness of discrete spectrum of three particle {Schr'́odinger} operator on the lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--108},
     year = {1997},
     volume = {111},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_111_1_a6/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - S. N. Lakaev
TI  - Finiteness of discrete spectrum of three particle Schr'́odinger operator on the lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 94
EP  - 108
VL  - 111
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_111_1_a6/
LA  - ru
ID  - TMF_1997_111_1_a6
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A S. N. Lakaev
%T Finiteness of discrete spectrum of three particle Schr'́odinger operator on the lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 94-108
%V 111
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_111_1_a6/
%G ru
%F TMF_1997_111_1_a6
Zh. I. Abdullaev; S. N. Lakaev. Finiteness of discrete spectrum of three particle Schr'́odinger operator on the lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 111 (1997) no. 1, pp. 94-108. http://geodesic.mathdoc.fr/item/TMF_1997_111_1_a6/

[1] D. R. Yafaev, DAN SSSR, 206 (1972), 68

[2] G. M. Zhislin, DAN SSSR, 207 (1972), 25 | Zbl

[3] D. R. Yafaev, Matem. sb., 94 (1974), 567 | MR | Zbl

[4] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123 (1989), 274 | DOI | MR

[5] H. J. Tamura, Funct. Anal., 95 (1991), 433 | DOI | MR | Zbl

[6] V. N. Efimov, YaF, 12:5 (1970), 1080

[7] D. R. Yafaev, TMF, 25:2 (1975), 185 | MR | Zbl

[8] D. C. Mattis, Rev. Modern Phys., 58:2 (1986), 361 | DOI | MR

[9] A. I. Mogilner, In Applications of self-adjoint extensions in quantumphysics, Lecture Notes in Phys, 324, eds. P. Exner and P. Seba, Springer-Verlag, Berlin, 1988 | MR

[10] S. N. Lakaev, Funkts. analiz i ego prilozh., 27:3 (1993), 15 | MR | Zbl

[11] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[12] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[13] J. I. Abdullaev, S. N. Lakaev, Advances in Soviet Mathematics, 5, 1991, 1 | MR | Zbl

[14] S. N. Lakaev, Sh. M. Tilavova, TMF, 101:2 (1994), 235 | MR | Zbl

[15] S. N. Lakaev, TMF, 91:1 (1992), 51 | MR