Quantum dynamics as stochastic process in phase space
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 454-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that quantum dynamics is equivalent to a stochastic process in phase space. The process is described by normalized but not necessarily positive probability distributions (“pseudoprobabilities”). The dynamics of the distribution function of current process values literally coincides with that of the Wigner function of quantum system.
@article{TMF_1997_110_3_a8,
     author = {P. L. Rubin},
     title = {Quantum dynamics as stochastic process in phase space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {454--458},
     year = {1997},
     volume = {110},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a8/}
}
TY  - JOUR
AU  - P. L. Rubin
TI  - Quantum dynamics as stochastic process in phase space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 454
EP  - 458
VL  - 110
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a8/
LA  - ru
ID  - TMF_1997_110_3_a8
ER  - 
%0 Journal Article
%A P. L. Rubin
%T Quantum dynamics as stochastic process in phase space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 454-458
%V 110
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a8/
%G ru
%F TMF_1997_110_3_a8
P. L. Rubin. Quantum dynamics as stochastic process in phase space. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 454-458. http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a8/

[1] E. Nelson, Dynamical Theories of Brownian Motion, Princeton Univ., Princeton, New Jersey, 1967 | MR

[2] M. Davidson, J. Math. Phys., 19:9 (1978), 1975 | DOI | MR | Zbl

[3] J. E. Moyal, Proc. Cambridge. Phil. Soc., 45. Pt 1 (1949), 99 | DOI | MR | Zbl

[4] E. Wigner, Phys. Rev., 40:6 (1932), 749 | DOI | MR | Zbl

[5] K. Husimi, Proc. Phys. Math. Soc. Japan, 22 (1940), 264 | Zbl

[6] S. Weinberg, Phys. Rev. Lett., 62:5 (1989), 485 | DOI | MR