On small perturbations of the Schrödinger equation with periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 443-453 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider small perturbations of the potential periodic in variables $x_j$, $j=1,2,3$, by a function wich is periodic in $x_1$, $x_2$ and exponentially decreases as $|x_3|\to\infty$. We prove that close to energies corresponding to the extrema in the third component of the quasy-momentum of nondegenerate eigenvalues of the Schrödinger operator with periodic potential considered in the cell there exists a unique (up to multiplicative factor) solution of the integral equation describing both eigenvalues and resonance levels. The asymptotic behaviour of the latter quantities is described.
@article{TMF_1997_110_3_a7,
     author = {Yu. P. Chuburin},
     title = {On small perturbations of the {Schr\"odinger} equation with periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {443--453},
     year = {1997},
     volume = {110},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a7/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - On small perturbations of the Schrödinger equation with periodic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 443
EP  - 453
VL  - 110
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a7/
LA  - ru
ID  - TMF_1997_110_3_a7
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T On small perturbations of the Schrödinger equation with periodic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 443-453
%V 110
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a7/
%G ru
%F TMF_1997_110_3_a7
Yu. P. Chuburin. On small perturbations of the Schrödinger equation with periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 443-453. http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a7/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[2] M. M. Skriganov, Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Tr. Matem. in-ta AN SSSR, 171, Nauka, L., 1985 | MR | Zbl

[3] E. B. Davies, Proc. Cambridge Philos. Soc., 82 (1977), 327 | DOI | MR | Zbl

[4] N. E. Firsova, Matem. zametki, 36:5 (1984), 711 | MR | Zbl

[5] M. Sh. Birman, Funkts. analiz i ego prilozh., 25:2 (1991), 89 | MR | Zbl

[6] A. V. Sobolev, Funkts. analiz i ego prilozh., 25:2 (1991), 93 | MR

[7] M. Dimassi, Ann. Inst. Henri Poincaré. Phys. theor., 61:2 (1994), 189 | MR | Zbl

[8] F. Klopp, Ark. mat., 32:2 (1994), 323 | DOI | MR | Zbl

[9] L. E. Thomas, Commun. Math. Phys., 33 (1973), 335 | DOI | MR

[10] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[11] V. V. Dyakin, Analiticheskoe issledovanie obschikh svoistvo zonnykh spektrov tverdykh tel, Dis. ...dokt. fiz.-mat. nauk, IFM UNTs AN SSSR, Sverdlovsk, 1984

[12] Yu. P. Chuburin, O spektre operatora Shredingera v sluchae poluogranichennogo kristalla, Dep. v VINITI No 7614-V, VINITI, M., 1985

[13] Yu. P. Chuburin, TMF, 98:1 (1994), 38 | MR | Zbl

[14] Yu. P. Chuburin, TMF, 77:3 (1988), 472 | MR

[15] Yu. P. Chuburin, TMF, 72:1 (1987), 120 | MR

[16] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966 | Zbl

[17] T. M. Gataullin, M. V. Karasev, TMF, 9:2 (1971), 252 | Zbl

[18] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[19] Yu. P. Chuburin, Matem. zametki, 52:2 (1992), 138 | MR

[20] Kh. Tsikon, R. Frëze, V. Kirsh, B. Saimon, Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR