Renormalization group in the problem of the fully developed turbulence of a compresible fluid
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 385-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of the fully developed turbulence of a compressible fluid based on the stohastic Navier–Stokes equation is considered by means of the field theoretic renormalization group. It is proved that the model is multiplicatively renormalizable in terms of the variables “velocity – logarithm of the pressure”. The scaling dimensions of the fields and parameters are calculated in the first order of the $\epsilon$-expansion. The dependence of the effective sound velocity and the Mach number on the integral turbulence scale $L$ is studied.
@article{TMF_1997_110_3_a3,
     author = {N. V. Antonov and M. Yu. Nalimov and A. A. Udalov},
     title = {Renormalization group in the problem of the fully developed turbulence of a compresible fluid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {385--398},
     year = {1997},
     volume = {110},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a3/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - M. Yu. Nalimov
AU  - A. A. Udalov
TI  - Renormalization group in the problem of the fully developed turbulence of a compresible fluid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 385
EP  - 398
VL  - 110
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a3/
LA  - ru
ID  - TMF_1997_110_3_a3
ER  - 
%0 Journal Article
%A N. V. Antonov
%A M. Yu. Nalimov
%A A. A. Udalov
%T Renormalization group in the problem of the fully developed turbulence of a compresible fluid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 385-398
%V 110
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a3/
%G ru
%F TMF_1997_110_3_a3
N. V. Antonov; M. Yu. Nalimov; A. A. Udalov. Renormalization group in the problem of the fully developed turbulence of a compresible fluid. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 385-398. http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a3/

[1] C. De Dominicis, P. C. Martin, Phys. Rev. A, 19 (1979), 419 | DOI

[2] J.-D. Fournier, U. Frish, Phys. Rev. A, 28 (1983), 1000 | DOI

[3] L. Ts. Adzhemyan, A. N. Vasilev, Yu. M. Pismak, TMF, 57 (1983), 268 | MR | Zbl

[4] V. Yakhot, S. A. Orszag, Phys. Rev. Lett., 57 (1986), 1722 | DOI

[5] L. Ts. Adzhemyan, A. N. Vasilev, M. Gnatich, TMF, 74 (1988), 180 | MR

[6] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, ZhETF, 95 (1989), 1272

[7] V. Yakhot, L. M. Smith, J. Sci. Comput., 7 (1992), 35 | DOI | MR | Zbl

[8] L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim, TMF, 100 (1994), 382 | MR | Zbl

[9] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, Ch. 2, Nauka, M., 1967

[10] L. D. Landau, E. M. Lifshits, Gidrodinamika, Nauka, M., 1986 | MR

[11] V. S. Lvov, A. V. Mikhailov, Preprint No 54, IAiE, Novosibirsk, 1977

[12] L. Ts. Adzhemyan, M. Yu. Nalimov, M. M. Stepanova, TMF, 104 (1995), 260 | MR | Zbl

[13] D. Yu. Volchenkov, M. Yu. Nalimov, TMF, 106 (1996), 375 | DOI | MR | Zbl

[14] B. B. Kadomtsev, V. I. Petviashvili, DAN SSSR, 208 (1973), 794 | Zbl

[15] K. A. Naugolnykh, S. A. Rybak, ZhETF, 68 (1975), 78

[16] I. Staroselsky, V. Yakhot, S. Kida, S. A. Orszag, Phys. Rev. Lett., 65 (1990), 171 | DOI

[17] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8 (1973), 423 ; H. K. Janssen, Z. Phys., 23 (1976), 377 ; R. Baush, H. K. Janssen, H. Wagner, Z. Phys., 24 (1976), 113; C. De Dominicis, J. Phys. Suppl. C1, 37 (1976), 247 | DOI | MR

[18] J. Collins, Renormalization, Cambridge University Press, Cambridge, 1985 | MR

[19] J. Honkonen, M. Yu. Nalimov, Z. Phys., 99 (1996), 297 | DOI