Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 372-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We reformulate free equations of motion for massive spin 0 and spin 1/2 matter fields in $2+1$-dimensional anti-de Sitter space in the form of some covariant constancy conditions. The infinite-dimensional representation of the anti-de Sitter algebra underlying this formulation is shown to admit a natural realization in terms of the algebra of deformed oscillators with a deformation parameter related to the parameter of mass.
@article{TMF_1997_110_3_a2,
     author = {A. V. Barabanschikov and M. A. Vasiliev and S. F. Prokushkin},
     title = {Free equations for massive matter fields in $2+1$-dimensional {anti-de~Sitter} space from deformed oscillator algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--384},
     year = {1997},
     volume = {110},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/}
}
TY  - JOUR
AU  - A. V. Barabanschikov
AU  - M. A. Vasiliev
AU  - S. F. Prokushkin
TI  - Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 372
EP  - 384
VL  - 110
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/
LA  - ru
ID  - TMF_1997_110_3_a2
ER  - 
%0 Journal Article
%A A. V. Barabanschikov
%A M. A. Vasiliev
%A S. F. Prokushkin
%T Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 372-384
%V 110
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/
%G ru
%F TMF_1997_110_3_a2
A. V. Barabanschikov; M. A. Vasiliev; S. F. Prokushkin. Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 372-384. http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/

[1] M. A. Vasiliev, Class. Quantum Gravity, 11 (1994), 649 | DOI | MR

[2] M. A. Vasiliev, Mod. Phys. Lett., A7 (1992), 3689 | DOI | MR | Zbl

[3] M. A. Vasiliev, JETP Lett., 50:8 (1989), 374 ; Int. J. Mod. Phys., A6 (1991), 1115 | MR | DOI | MR | Zbl

[4] E. P. Wigner, Phys. Rev., 77 (1950), 711 | DOI | MR | Zbl

[5] E. Bergshoeff, B. de Wit, M. A. Vasiliev, Nucl. Phys., B336 (1991), 315 | DOI | MR

[6] E. Bergshoeff, M. P. Blencowe, K. S. Stelle, Commun. Math. Phys., 128 (1990), 213 | DOI | MR | Zbl

[7] M. Bordemann, J. Hoppe, P. Schaller, Phys. Lett., 232 (1989), 199 | DOI | MR

[8] M. P. Blencowe, Class. Quantum Gravity, 6 (1989), 443 | DOI | MR