Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 372-384
Cet article a éte moissonné depuis la source Math-Net.Ru
We reformulate free equations of motion for massive spin 0 and spin 1/2 matter fields in $2+1$-dimensional anti-de Sitter space in the form of some covariant constancy conditions. The infinite-dimensional representation of the anti-de Sitter algebra underlying this formulation is shown to admit a natural realization in terms of the algebra of deformed oscillators with a deformation parameter related to the parameter of mass.
@article{TMF_1997_110_3_a2,
author = {A. V. Barabanschikov and M. A. Vasiliev and S. F. Prokushkin},
title = {Free equations for massive matter fields in $2+1$-dimensional {anti-de~Sitter} space from deformed oscillator algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {372--384},
year = {1997},
volume = {110},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/}
}
TY - JOUR AU - A. V. Barabanschikov AU - M. A. Vasiliev AU - S. F. Prokushkin TI - Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 372 EP - 384 VL - 110 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/ LA - ru ID - TMF_1997_110_3_a2 ER -
%0 Journal Article %A A. V. Barabanschikov %A M. A. Vasiliev %A S. F. Prokushkin %T Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra %J Teoretičeskaâ i matematičeskaâ fizika %D 1997 %P 372-384 %V 110 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/ %G ru %F TMF_1997_110_3_a2
A. V. Barabanschikov; M. A. Vasiliev; S. F. Prokushkin. Free equations for massive matter fields in $2+1$-dimensional anti-de Sitter space from deformed oscillator algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 3, pp. 372-384. http://geodesic.mathdoc.fr/item/TMF_1997_110_3_a2/
[1] M. A. Vasiliev, Class. Quantum Gravity, 11 (1994), 649 | DOI | MR
[2] M. A. Vasiliev, Mod. Phys. Lett., A7 (1992), 3689 | DOI | MR | Zbl
[3] M. A. Vasiliev, JETP Lett., 50:8 (1989), 374 ; Int. J. Mod. Phys., A6 (1991), 1115 | MR | DOI | MR | Zbl
[4] E. P. Wigner, Phys. Rev., 77 (1950), 711 | DOI | MR | Zbl
[5] E. Bergshoeff, B. de Wit, M. A. Vasiliev, Nucl. Phys., B336 (1991), 315 | DOI | MR
[6] E. Bergshoeff, M. P. Blencowe, K. S. Stelle, Commun. Math. Phys., 128 (1990), 213 | DOI | MR | Zbl
[7] M. Bordemann, J. Hoppe, P. Schaller, Phys. Lett., 232 (1989), 199 | DOI | MR
[8] M. P. Blencowe, Class. Quantum Gravity, 6 (1989), 443 | DOI | MR