Perturbation theory for nonperiodic Anderson model
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 308-322

Voir la notice de l'article provenant de la source Math-Net.Ru

The periodic Anderson model consisting of electrons of conductivity and $f$-localized electrons is studied. One-knot hybridization of these two subsystems of electrons is treated as a perturbation. A new diagrammic method based on multiparticle one-knot irreducible Green's functions for $f$-electrons and on the usual Wick theorem for the subsystems of electrons of conductivity is developed. The Dyson equations for one-particle Green's functions and relations between them are found. The results are exact and can be used for selfconsistent аpproximations. In the Habbard I approximation the spectrum of one-particle exitations is studied.
@article{TMF_1997_110_2_a9,
     author = {V. A. Moskalenko},
     title = {Perturbation theory for nonperiodic {Anderson} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {308--322},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/}
}
TY  - JOUR
AU  - V. A. Moskalenko
TI  - Perturbation theory for nonperiodic Anderson model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 308
EP  - 322
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/
LA  - ru
ID  - TMF_1997_110_2_a9
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%T Perturbation theory for nonperiodic Anderson model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 308-322
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/
%G ru
%F TMF_1997_110_2_a9
V. A. Moskalenko. Perturbation theory for nonperiodic Anderson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 308-322. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/