Perturbation theory for nonperiodic Anderson model
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 308-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The periodic Anderson model consisting of electrons of conductivity and $f$-localized electrons is studied. One-knot hybridization of these two subsystems of electrons is treated as a perturbation. A new diagrammic method based on multiparticle one-knot irreducible Green's functions for $f$-electrons and on the usual Wick theorem for the subsystems of electrons of conductivity is developed. The Dyson equations for one-particle Green's functions and relations between them are found. The results are exact and can be used for selfconsistent аpproximations. In the Habbard I approximation the spectrum of one-particle exitations is studied.
@article{TMF_1997_110_2_a9,
     author = {V. A. Moskalenko},
     title = {Perturbation theory for nonperiodic {Anderson} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {308--322},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/}
}
TY  - JOUR
AU  - V. A. Moskalenko
TI  - Perturbation theory for nonperiodic Anderson model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 308
EP  - 322
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/
LA  - ru
ID  - TMF_1997_110_2_a9
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%T Perturbation theory for nonperiodic Anderson model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 308-322
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/
%G ru
%F TMF_1997_110_2_a9
V. A. Moskalenko. Perturbation theory for nonperiodic Anderson model. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 308-322. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a9/

[1] P. W. Anderson, Phys. Rev., 124 (1961), 41 | DOI | MR

[2] H. J. Lader, B. Mulschlegel, Z. Phys. B, 29 (1978), 341 | DOI

[3] P. Coleman, Phys. Rev. B, 29:6 (1984), 3035 | DOI

[4] J. Callaway, D. P. Chen, D. G. Kanhere, P. K. Misra, Phys. Rev. B, 38:4 (1988), 2583 | DOI

[5] J. Callaway, L. Tan, H. Zheng, Phys. Rev. B, 50:3 (1994), 1369 | DOI

[6] T. M. Rice, K. Ueda, Phys. Rev. Lett., 55:9 (1985), 995 | DOI

[7] R. Blankenbecler, J. R. Fulco, W. Gill, D. I. Scalapino, Phys. Rev. Lett., 58:4 (1987), 411 | DOI

[8] K. Yamamoto, K. Ueda, J. Phys. Soc. Japan, 59:9 (1990), 3284 | DOI | MR

[9] K. Iamada, K. Yosida, Electron correlation and magnetism in narrow-band systems, ed. T. Moriya, Springer, Berlin, 1981, P. 710

[10] A. Kuzemsky, Preprint ICTP IC/93/336 | Zbl

[11] A. L. Kuzemsky, J. C. Parlebas, H. Beck, Physica, A198 (1993), 606 ; А. Л. Куземский, Краткие сообщения ОИЯИ 3/60/1993 | DOI | Zbl

[12] B. H. Brandow, Phys. Rev., B33 (1986), 215 | DOI

[13] B. Möller, P. Wölfle, Phys. Rev. B, 48 (1993), 10320 | DOI

[14] E. Halvorsen, Q. Czycholl, J. Phys.: Condens. Matter., 8 (1996), 1775 | DOI

[15] J. Habbard, Proc. Roy. Soc. A, 276 (1963), 233

[16] V. L. Bonch-Bruevich, S. V. Tyablikov, Metod funktsii Grina v statisticheskoi mekhanike, GIFML, M., 1961 | MR

[17] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR

[18] M. I. Vladimir, V. A. Moskalenko, TMF, 82:3 (1990), 428

[19] S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, TMF, 85:2 (1990), 248

[20] N. N. Bogolyubov, V. A. Moskalenko, DAN SSSR, 136:5 (1991), 1107