Numerical analysis of convergent perturbation theory in quantum field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 291-297
Cet article a éte moissonné depuis la source Math-Net.Ru
Results of numerical analysis of convergency for a new series of perturbation theory are presented. Two examples are considered: anharmonic oscillator in quantum mechanics and the renormalization group $\beta$-function in field theory. It is shown that in the former case the series converges to an exact value in the wide region of the expansion parameter. This region can be enlarged by using the Padé approximation. In the field theory case the results have the stronger dependence on the expansion parameter. An algorithm of choosing this parameter in such a way as to obtain stable results is discussed.
@article{TMF_1997_110_2_a7,
author = {D. I. Kazakov and A. I. Onitchenko},
title = {Numerical analysis of convergent perturbation theory in quantum field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--297},
year = {1997},
volume = {110},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/}
}
TY - JOUR AU - D. I. Kazakov AU - A. I. Onitchenko TI - Numerical analysis of convergent perturbation theory in quantum field theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1997 SP - 291 EP - 297 VL - 110 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/ LA - ru ID - TMF_1997_110_2_a7 ER -
D. I. Kazakov; A. I. Onitchenko. Numerical analysis of convergent perturbation theory in quantum field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/
[1] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, TMF, 109:1 (1996), 51–69 ; Препринт НИИЯФ МГУ 95-31/395; 95-32/396 | DOI | MR
[2] D. I. Kazakov, D. V. Shirkov, Fortschr. Phys., 28 (1980), 465 | DOI | MR
[3] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1989, P. 814 | MR
[4] C. M. Bender, T. T. Wu, Phys. Rev. D, 7 (1972), 1620 | DOI
[5] K. G. Chetyrkin, S. G. Gorishny, S. A. Larin, F. V. Tkachov, Phys. Lett. B, 132 (1983), 351 | DOI