Numerical analysis of convergent perturbation theory in quantum field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 291-297

Voir la notice de l'article provenant de la source Math-Net.Ru

Results of numerical analysis of convergency for a new series of perturbation theory are presented. Two examples are considered: anharmonic oscillator in quantum mechanics and the renormalization group $\beta$-function in field theory. It is shown that in the former case the series converges to an exact value in the wide region of the expansion parameter. This region can be enlarged by using the Padé approximation. In the field theory case the results have the stronger dependence on the expansion parameter. An algorithm of choosing this parameter in such a way as to obtain stable results is discussed.
@article{TMF_1997_110_2_a7,
     author = {D. I. Kazakov and A. I. Onitchenko},
     title = {Numerical analysis of convergent perturbation theory in quantum field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--297},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/}
}
TY  - JOUR
AU  - D. I. Kazakov
AU  - A. I. Onitchenko
TI  - Numerical analysis of convergent perturbation theory in quantum field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 291
EP  - 297
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/
LA  - ru
ID  - TMF_1997_110_2_a7
ER  - 
%0 Journal Article
%A D. I. Kazakov
%A A. I. Onitchenko
%T Numerical analysis of convergent perturbation theory in quantum field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 291-297
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/
%G ru
%F TMF_1997_110_2_a7
D. I. Kazakov; A. I. Onitchenko. Numerical analysis of convergent perturbation theory in quantum field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a7/