Creation of soliton pairs in nonlinear media with low dissipation
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 254-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two weakly interacting KdV solitons in the presence of low viscosity are considered. A model describing their interaction in terms of a slow change of parameters of the two-soliton solution of the KdV equation under perturbation is proposed. It is shown that the inverse scattering method as well as Whitham's method lead to the same system of reduced equations. The found solutions are in good correspondence with the results of numerical calculations. The main result is a creation of a bound quasistationary pair of solitons with their successive dissipation. Although both creation and dissipation processes are due to the low viscosity, the former one is essentially faster.
@article{TMF_1997_110_2_a5,
     author = {D. N. Ivanychev and G. M. Fraiman},
     title = {Creation of soliton pairs in nonlinear media with low dissipation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--271},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a5/}
}
TY  - JOUR
AU  - D. N. Ivanychev
AU  - G. M. Fraiman
TI  - Creation of soliton pairs in nonlinear media with low dissipation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 254
EP  - 271
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a5/
LA  - ru
ID  - TMF_1997_110_2_a5
ER  - 
%0 Journal Article
%A D. N. Ivanychev
%A G. M. Fraiman
%T Creation of soliton pairs in nonlinear media with low dissipation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 254-271
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a5/
%G ru
%F TMF_1997_110_2_a5
D. N. Ivanychev; G. M. Fraiman. Creation of soliton pairs in nonlinear media with low dissipation. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 254-271. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a5/

[1] Y. S. Kishvar, B. A. Malomed, Rev. Mod. Phys., 61:4 (1989), 763–916 | DOI

[2] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] C. S. Su, C. S. Gardner, J. Math. Phys., 10 (1969), 536–539 | DOI | MR | Zbl

[4] T. Taniuti, C.-C. Wei, J. Phys. Soc. Japan, 24 (1968), 941 | DOI

[5] V. I. Karpman, Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973 | MR

[6] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[7] K. A. Gorshkov, L. A. Ostrovsky, Physica, 3D:1–2 (1981), 428–438 | Zbl

[8] V. I. Karpman, E. M. Maslov, ZhETF, 73 (1977), 537 | MR

[9] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[10] G. R. Lamb, Jr., Elements of Soliton Theory, John Willey, New York, 1980 | MR | Zbl

[11] D. N. Ivanychev, G. M. Fraiman, Preprint No 388, IPF RAN, N. Novgorod, 1996

[12] P. Deift, E. Trubowitz, Commun. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[13] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR