Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 233-241
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the discrete transformations of the solutions and potentials of the second order partial differential equation with two independent variables. These transformations are introduced by the formula $D=V_1\partial_x+V_2\partial_y+V_3$. The simplest closed chains of these transformations are considered. The integrability of the derived nonlinear equations by the IST-method is proved.
@article{TMF_1997_110_2_a3,
author = {A. I. Zenchuk},
title = {Some generalizations of the 2-dimensional {Toda} chain and $\operatorname{sh}${-Gordon} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--241},
year = {1997},
volume = {110},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/}
}
TY - JOUR
AU - A. I. Zenchuk
TI - Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1997
SP - 233
EP - 241
VL - 110
IS - 2
UR - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/
LA - ru
ID - TMF_1997_110_2_a3
ER -
A. I. Zenchuk. Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/
[1] G. Darboux, Théorie generale des surfaces, Chelsea, New York, 1972 | MR | Zbl
[2] A. B. Shabat, TMF, 103:3 (1995), 170 | MR | Zbl
[3] S. V. Manakov, UMN, 31 (1976), 245 | MR | Zbl
[4] V. E. Zakharov, S. V. Manakov, Funkts. analiz i ego prilozh., 19:2 (1985), 11 | MR | Zbl
[5] L. V. Bogdanov, S. V. Manakov, J. Phys. A: Math. Gen., 21 (1988), L537 | DOI | MR | Zbl
[6] A. I. Zenchuk, S. V. Manakov, TMF, 105:3 (1995), 371 | MR | Zbl
[7] B. G. Konopelchenko, Solitons in Multidimensions, World Scientific, 1993 | MR