Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 233-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the discrete transformations of the solutions and potentials of the second order partial differential equation with two independent variables. These transformations are introduced by the formula $D=V_1\partial_x+V_2\partial_y+V_3$. The simplest closed chains of these transformations are considered. The integrability of the derived nonlinear equations by the IST-method is proved.
@article{TMF_1997_110_2_a3,
     author = {A. I. Zenchuk},
     title = {Some generalizations of the 2-dimensional {Toda} chain and $\operatorname{sh}${-Gordon} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--241},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/}
}
TY  - JOUR
AU  - A. I. Zenchuk
TI  - Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 233
EP  - 241
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/
LA  - ru
ID  - TMF_1997_110_2_a3
ER  - 
%0 Journal Article
%A A. I. Zenchuk
%T Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 233-241
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/
%G ru
%F TMF_1997_110_2_a3
A. I. Zenchuk. Some generalizations of the 2-dimensional Toda chain and $\operatorname{sh}$-Gordon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a3/

[1] G. Darboux, Théorie generale des surfaces, Chelsea, New York, 1972 | MR | Zbl

[2] A. B. Shabat, TMF, 103:3 (1995), 170 | MR | Zbl

[3] S. V. Manakov, UMN, 31 (1976), 245 | MR | Zbl

[4] V. E. Zakharov, S. V. Manakov, Funkts. analiz i ego prilozh., 19:2 (1985), 11 | MR | Zbl

[5] L. V. Bogdanov, S. V. Manakov, J. Phys. A: Math. Gen., 21 (1988), L537 | DOI | MR | Zbl

[6] A. I. Zenchuk, S. V. Manakov, TMF, 105:3 (1995), 371 | MR | Zbl

[7] B. G. Konopelchenko, Solitons in Multidimensions, World Scientific, 1993 | MR