Ultrametric space of free coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 334-336
Cet article a éte moissonné depuis la source Math-Net.Ru
Free coherent states for a system of two degrees of freedom are defined. 2-adic parameter on the set of coherent states correspondent to eigenvalue of operator of annihilation is constructed.
@article{TMF_1997_110_2_a11,
author = {S. V. Kozyrev},
title = {Ultrametric space of free coherent states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {334--336},
year = {1997},
volume = {110},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a11/}
}
S. V. Kozyrev. Ultrametric space of free coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 334-336. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a11/
[1] I. Ya. Arefeva, I. V. Volovich, The Master Field for QCD and $q$-deformed Quantum Field Theory, Preprint SMI-25-95 | MR
[2] R. Gopakumar, D. Gross, Nucl. Phys., B451 (1995), 379 | DOI | MR | Zbl
[3] M. R. Douglas, M. Li, Phys. Lett., B348 (1995), 360 | DOI
[4] L. Accardi, Y. G. Lu, Vigner semicircle low in quantum electrodynamics, Preprint of Volterra Center, No 126, 1992
[5] H. Maassen, J. Funct. Anal., 106 (1992), 409 | DOI | MR | Zbl
[6] I. Ya. Arefeva, I. V. Volovich, Phys. Lett. B, 268 (1991), 179 | DOI | MR
[7] V. S Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR