Nonlinear boundary problem for Boltzman's equations: impulse solutions and their bifurcations
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 323-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The statement of the nonlinear boundary conditions problem for the Boltzmann kinetic equation is considered. On this basis a possibility to form in the gases asymptoticaly periodic oscillations of the relaxation or preturbulent types is discussed.
@article{TMF_1997_110_2_a10,
     author = {I. B. Krasnyuk},
     title = {Nonlinear boundary problem for {Boltzman's} equations: impulse solutions and their bifurcations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--333},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a10/}
}
TY  - JOUR
AU  - I. B. Krasnyuk
TI  - Nonlinear boundary problem for Boltzman's equations: impulse solutions and their bifurcations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 323
EP  - 333
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a10/
LA  - ru
ID  - TMF_1997_110_2_a10
ER  - 
%0 Journal Article
%A I. B. Krasnyuk
%T Nonlinear boundary problem for Boltzman's equations: impulse solutions and their bifurcations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 323-333
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a10/
%G ru
%F TMF_1997_110_2_a10
I. B. Krasnyuk. Nonlinear boundary problem for Boltzman's equations: impulse solutions and their bifurcations. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 323-333. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a10/

[1] Uravnenie Boltsmana i ego prilozheniya, Mir, M., 1986

[2] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR

[3] I. B. Krasnyuk, IFZh, 67:1–2 (1994), 324 | MR

[4] I. B. Krasnyuk, B. L. Revzin, IFZh, 67:3–4 (1994), 167 | MR

[5] I. B. Krasnyuk, IFZh, 67:1–2 (1994), 162 | MR

[6] I. B. Krasnyuk, T. T. Riskiev, Optika i spektroskopiya, 75:3 (1993), 517

[7] I. B. Krasnyuk, T. T. Riskiev, B. L. Revzin, Uzb. fiz. zhurn., 1993, no. 4, 5

[8] I. B. Krasnyuk, T. T. Riskiev, A. A. Streltsov, Uzb. fiz. zhurn., 1994, no. 1, 50 | MR

[9] I. B. Krasniuk, “The systems with concurrens interaction oscillations of relaxational type”, Int. Conf. of Bifurcations and Chaos (Crimea), 1994 | MR

[10] I. B. Krasnyuk, “Ob odnom obobschenii nelineinoi giperbolicheskoi kraevoi zadachi na ploskosti”, Differentsialno-raznostnye uravneniya i zadachi matematicheskoi fiziki, Institut matematiki, Kiev, 1984, 38 | MR

[11] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, Mir, M., 1995

[12] V. P. Maslov, V. G. Danilov, K. A. Volosov, Matematicheskoe modelirovanie protsessov massoteploperenosa. Evolyutsiya dissipativnykh struktur, Nauka, M., 1987 | MR

[13] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[14] V. P. Maslov, Kompleksnyi metod VKB v lineinykh uravneniyakh, Nauka, M., 1977 | MR

[15] G. Venttsel, Vvedenie v kvantovuyu teoriyu volnovykh polei, Gostekhizdat, M., 1947

[16] V. K. Godunov, A. A. Sultagazin, UMN, 26:3 (1971) | MR | Zbl

[17] V. V. Vedenyapin, O teoreme suschestvovaniya v tselom resheniya zadachi Koshi nekotorykh giperbolicheskikh nelineinykh sistem uravnenii v chastnykh proizvodnykh (s prilozheniyami k diskretnym modelyam uravneniya Boltsmana), Preprint IPM RAN No 42, 1973

[18] I. B. Krasnyuk, Dokl. AN USSR. Ser. A, 1989, no. 6, 20 | MR | Zbl

[19] A. N. Sharkovskii, I. B. Krasnyuk, Yu. L. Maistrenko, Dokl. AN USSR, 1984, no. 12, 27 | MR