Tetrahedron equation and spin integrable models on the cubic lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 179-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is a review of results on three-dimensional generalization of Yang–Baxter equation obtained starting from the pioneering works of Zamolodchikov (1979) to our works made in spring 1995. The integrability condition for spin statistical models on the simple cubic lattice (tetrahedron equation) is discussed. Different versions of this equation are considered with their symmetrical properties. The solution of the tetrahedron equation corresponding to Bazhanov–Baxter model is considered in detail. The review contains an update list of solutions for this equation. Generalization for unhomogenious spin models with two types of Bolzmann's weights forming the checkerboard lattice is considered.
@article{TMF_1997_110_2_a0,
     author = {Yu. G. Stroganov},
     title = {Tetrahedron equation and spin integrable models on the cubic lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--213},
     year = {1997},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a0/}
}
TY  - JOUR
AU  - Yu. G. Stroganov
TI  - Tetrahedron equation and spin integrable models on the cubic lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 179
EP  - 213
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a0/
LA  - ru
ID  - TMF_1997_110_2_a0
ER  - 
%0 Journal Article
%A Yu. G. Stroganov
%T Tetrahedron equation and spin integrable models on the cubic lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 179-213
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a0/
%G ru
%F TMF_1997_110_2_a0
Yu. G. Stroganov. Tetrahedron equation and spin integrable models on the cubic lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 2, pp. 179-213. http://geodesic.mathdoc.fr/item/TMF_1997_110_2_a0/

[1] A. B. Zamolodchikov, ZhETF, 79 (1980), 641–664 | MR

[2] A. B. Zamolodchikov, Commun. Math. Phys., 79:4 (1981), 489–505 | DOI | MR

[3] V. V. Bazhanov, Yu. G. Stroganov, TMF, 52:1 (1982), 105–113 | MR

[4] V. V. Bazhanov, R. J. Baxter, J. Stat. Phys., 69 (1992), 453–485 | DOI | MR | Zbl

[5] R. M. Kashaev, V. V. Mangazeev, Yu. G. Stroganov, Int. J. Mod. Phys., A8:3 (1993), 587–601 | DOI | MR | Zbl

[6] R. M. Kashaev, V. V. Mangazeev, Yu. G. Stroganov, Int. J. Mod. Phys., A8:8 (1993), 1399–1409 | DOI | MR

[7] V. V. Bazhanov, Yu. G. Stroganov, Nucl. Phys., B230:4 (1984), 435–454 | DOI | MR

[8] R. J. Baxter, Commun. Math. Phys., 88 (1983), 185–205 | DOI | MR

[9] R. J. Baxter, Phys. Rev. Lett., 53 (1984), 1795 | DOI | MR

[10] R. J. Baxter, Physica, 18D (1986), 321–347 | MR | Zbl

[11] V. V. Bazhanov, Yu. G. Stroganov, TMF, 62:3 (1985), 377–387 ; 63:2, 291–302 ; 3, 417–427 | MR | MR | MR

[12] H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, M. Yan, Phys. Lett., A123 (1987), 219 | DOI | MR

[13] B. M. McCoy, J. H. H. Perk, S. Tang, C. H. Sah, Phys. Lett., A125 (1987), 9 | DOI | MR | Zbl

[14] R. J. Baxter, J. H. H. Perk, H. Au-Yang, Phys. Lett., A128 (1988), 138 | DOI | MR

[15] V. V. Bazhanov, Yu. G. Stroganov, J. Stat. Phys., 59:3/4 (1990), 799–817 | DOI | MR | Zbl

[16] V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, Yu. G. Stroganov, Commun. Math. Phys., 138 (1991), 393 | DOI | MR | Zbl

[17] E. Date, M. Jimbo, K. Miki, T. Miwa, Commun. Math. Phys., 137 (1991), 133 | DOI | MR | Zbl

[18] V. V. Bazhanov, R. J. Baxter, J. Stat. Phys., 71 (1993), 839 | DOI | MR

[19] I. G. Korepanov, Commun. Math. Phys., 154 (1993), 85–97 | DOI | MR | Zbl

[20] J. Hietarinta, J. Phys. A: Math. Gen., 27 (1994), 5727–5748 | DOI | MR | Zbl

[21] V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, “The tetrahedron equation and its solutions”, Proceedings of the conference SMQFT (May 16–21, 1994), Los Angeles

[22] V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, “New solution of vertex type tetrahedron equation”, Mod. Phys. Lett., A10:4 (1995), 279–287 ; Preprint IHEP 94-106, 1994 | DOI | MR | Zbl

[23] V. V. Mangazeev, Yu. G. Stroganov, Mod. Phys. Lett., A8:36 (1993), 3475–3482 | DOI | MR | Zbl

[24] V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, Int. J. Mod. Phys., A9:31 (1994), 5517–5530 | DOI | MR | Zbl

[25] H. E. Boos, V. V. Mangazeev, S. M. Sergeev, “Modified tetrahedron equations and related 3D integrable models”, Int. J. Mod. Phys., A10:28 (1995), 4041–4063 ; Preprint IHEP 94-76, 1994 | DOI | MR | Zbl

[26] R. J. Baxter, Phyl. Tranc. Roy. Soc., A289:1459 (1978), 315–346 | DOI | MR

[27] H. Au-Yang, J. H. H. Perk, Adv. Stud. P. Math., 19, 1989, 57–94 | MR | Zbl

[28] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[29] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR