Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 122-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stohastic theory of fully developed turbulence is considered within the framework of the field theoretic renormalization group and short-distance expansion. The problem of verification of the Kolmogorov–Obukhov theory is discussed in connection with correlation functions of composite operators. An explicit expression for the critical dimensionality of a general composite operator is obtained. The Second Kolmogorov hypothesis (indepedence of the correlators on the viscosity) is proved for an arbitrary UV-finite composite operator. It is shown that there exists an infinite number of Galilean invariant scalar operators having negative critical dimensionalities.
@article{TMF_1997_110_1_a9,
     author = {N. V. Antonov and A. N. Vasil'ev},
     title = {Renormalization group in the theory of developed turbulence. {The} problem of justifying the {Kolmogorov} hypotheses for composite operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {122--136},
     year = {1997},
     volume = {110},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a9/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - A. N. Vasil'ev
TI  - Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 122
EP  - 136
VL  - 110
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a9/
LA  - ru
ID  - TMF_1997_110_1_a9
ER  - 
%0 Journal Article
%A N. V. Antonov
%A A. N. Vasil'ev
%T Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 122-136
%V 110
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a9/
%G ru
%F TMF_1997_110_1_a9
N. V. Antonov; A. N. Vasil'ev. Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 122-136. http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a9/

[1] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, Ch. 2, Nauka, M., 1967

[2] W. D. McComb, The Physics of Fluid Turbulence, Clarendon, Oxford, 1990 | MR

[3] B. B. Kadomtsev, Voprosy teorii plazmy, T. 4, Atomizdat, M., 1964 ; R. H. Kraichnan, Phys. Fluids, 7 (1964), 1723 ; 8 (1965), 575 ; 9 (1966), 1728 ; 1884 ; В. С. Львов, Препринт No 53, ИАиЭ СО АН СССР, Новосибирск, 1977 | MR | DOI | MR | Zbl | DOI | MR | DOI | Zbl | MR

[4] R. A. Antonia, E. Hopfinger, Y. Gagne, F. Anselmet, Phys. Rev., A30 (1984), 2704 ; R. A. Antonia, B. R. Satyaprakash, A. Hussain, J. Fluid Mech., 119 (1982), 55 ; F. Anselmet, Y. Gagne, E. Hopfinger, R. A. Antonia, J. Fluid Mech., 140 (1984), 63 | DOI | DOI | DOI

[5] V. R. Kuznetsov, A. A. Praskovskii, V. A. Sabelnikov, Izv. AN SSSR. Ser. MZhG, 6 (1988), 51; В. Р. Кузнецов, В. А. Сабельников, Турбулентность и горение, Наука, М., 1986

[6] U. Frish, P. L. Sulem, M. Nelkin, J. Fluid Mech., 87 (1978), 719 | DOI

[7] M. S. Borgas, Phys. Fluids, A4(9) (1992), 2055 ; C. Meneveau, K. R. Sreenivasan, J. Fluid Mech., 224 (1991), 429 | DOI | Zbl | DOI | MR | Zbl

[8] P. Tong, W. I. Goldberg, Phys. Fluids, 31 (1988), 2841 ; R. R. Prasad, K. R. Sreenivasan, Phys. Fluids, A2 (1990), 792 ; C. Baudet, S. Ciliberto, P. N. Tien, J. Phys. II (France), 3 (1993), 293 ; П. Л. Ваньян, Письма в ЖЭТФ, 60:4 (1994) | DOI | MR | DOI | DOI

[9] C. De Dominicis, P. S. Martin, Phys. Rev., A19 (1979), 419 | DOI

[10] J.-D. Fournier, U. Frish, Phys. Rev., A28 (1983), 1000 | DOI

[11] L. Ts. Adzhemyan, A. N. Vasilev, Yu. M. Pismak, TMF, 57 (1983), 268 | MR | Zbl

[12] V. Yakhot, S. A. Orszag, J. Sci. Comp., 1 (1986), 3 ; W. P. Dannevik, V. Yakhot, S. A. Orszag, Phys. Fluids, 30 (1987), 2021 | DOI | MR | Zbl | DOI | MR | Zbl

[13] L. Ts. Adzhemyan, A. N. Vasilev, M. Gnatich, TMF, 74 (1988), 180 | MR

[14] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, ZhETF, 95 (1989), 1272

[15] N. V. Antonov, Zap. nauchn. semin. LOMI, 169, 1988, 18 | Zbl

[16] V. Yakhot, Z.-S. She, S. A. Orszag, Phys. Fluids, A1(2) (1989), 289 | DOI | MR | Zbl

[17] V. Yakhot, L. M. Smith, J. Sci. Comp., 7 (1992), 35 | DOI | MR | Zbl

[18] N. V. Antonov, Vestn. SPbU. Ser. Fiz., khim., 1992, no. 3, 3 ; No 4, 6 | MR | Zbl

[19] L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim, TMF, 100 (1994), 382 | MR | Zbl

[20] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford, 1989 | MR

[21] V. S. L'vov, Phys. Rep., 207 (1991), 1 | DOI | MR

[22] V. I. Belinicher, V. S. Lvov, ZhETF, 93 (1987), 553

[23] R. Z. Sagdeev, S. S. Moiseev, A. V. Tur, V. V. Yanovskii, Non-linear phenomena in plasma physics and hydrodynamics, ed. R. Z. Sagdeev, Mir, M., 1986, P. 138

[24] V. V. Lebedev, V. S. Lvov, Pisma v ZhETF, 59 (1994), 546

[25] L. Ts. Adzhemyan, N. V. Antonov, Vestn. SPbU. Ser. Fiz., khim., 1994, no. 2 (11), 53

[26] N. V. Antonov, S. V. Borisenok, V. I. Girina, TMF, 106 (1996), 92 | DOI | MR | Zbl