Quantum dissipative systems. III. Definition and algebraic structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 73-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting from the requirement of a consistent quantum description of dissipative (non-Hamiltonian) systems, which is formulated as the absence of a contradiction between the evolution equations for quantum dissipative systems and quantum commutation relations, we show that the Jacobi identity is not satisfied. Thus, the requirement for a consistent quantum description forces one go beyond the Lie algebra. As a result, anticommutative non-Lie algebras are necessary to describe dissipative (non-Hamiltonian) systems in quantum theory.
@article{TMF_1997_110_1_a5,
     author = {V. E. Tarasov},
     title = {Quantum dissipative {systems.~III.} {Definition} and algebraic structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--85},
     year = {1997},
     volume = {110},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a5/}
}
TY  - JOUR
AU  - V. E. Tarasov
TI  - Quantum dissipative systems. III. Definition and algebraic structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 73
EP  - 85
VL  - 110
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a5/
LA  - ru
ID  - TMF_1997_110_1_a5
ER  - 
%0 Journal Article
%A V. E. Tarasov
%T Quantum dissipative systems. III. Definition and algebraic structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 73-85
%V 110
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a5/
%G ru
%F TMF_1997_110_1_a5
V. E. Tarasov. Quantum dissipative systems. III. Definition and algebraic structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 73-85. http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a5/

[1] V. E. Tarasov, TMF, 100:3 (1994), 402–417 | MR | Zbl

[2] G. Khaken, Lazernaya svetodinamika, Mir, M., 1988, S. 255–274

[3] V. E. Tarasov, Dissipative quantum mechanics: the generalization of the canonical quantization and von Neumann equation, Preprint ICTP. IC-94-192, Trieste, 1994 ; E-print hep-th/9410025 | MR

[4] V. M. Fillipov, V. M. Savchin, S. G. Shorokhov, “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Sovr. probl. matem., VINITI, M., 1992, 3–178 | MR

[5] I. K. Edwards, Amer. J. Phys. Rev., 47:2 (1979), 153–155 | DOI

[6] M. Hensel, H. J. Korsch, J. Phys., A25:7 (1992), 2043–2064 | MR | Zbl

[7] J. Ellis, J. S. Hagelin, D. V. Nanopoulos, M. Srednicki, Nucl. Phys. B, B242:3 (1984), 381–395 | DOI

[8] V. H. Steeb, Physica A, 95:1 (1979), 181–190 | DOI | MR

[9] V. S. Mashkevich, Kineticheskaya teoriya lazerov, Nauka, M., 1971, S. 22–29

[10] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, Phys. Lett. B, B293:1 (1992), 37–48 | DOI

[11] V. E. Tarasov, TMF, 101:1 (1994), 38–46 | MR | Zbl

[12] V. E. Tarasov, Phys. Lett. B, 323:2/3 (1994), 296–304 | DOI | MR

[13] V. E. Tarasov, Mod. Phys. Lett. A, 9:26 (1994), 2411–2419 | DOI | MR | Zbl

[14] S. A. Hojman, L. C. Shepley, J. Math. Phys., 32:1 (1991), 142–146 | DOI | MR | Zbl

[15] U. Bratelli, “O dinamicheskikh polugruppakh i deistviyakh kompaktnykh grupp”, Kvantovye sluchainye protsessy i otkrytye sistemy, Mir, M., 1988, 180–196