Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 149-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the reduced phase space arising in the Hamiltonian reduction of the phase space corresponding to a free particle motion on the group $\operatorname {SL}(2,\mathbb R)$ is investigated. In the considered reduction the constraints similar to those in the Hamiltonian reduction of the Wess–Zumino–Novikov–Witten model to Toda systems are used. It is shown that the reduced phase space is diffeomorphic either to the union of two two-dimensional planes, or to the cylinder $S^1 \times\mathbb R$. Canonical coordinates are constructed in both cases. In the first case the reduced phase space is sympectomorphic to the union of two cotangent bundles $T^*(\mathbb R)$ endowed with the canonical symplectic structure, while in the second case it is symplectomorphic to the cotangent bundle $T^*(S^1)$ also endowed with the canonical sympectic structure.
@article{TMF_1997_110_1_a11,
     author = {A. V. Razumov and V. I. Yasnov},
     title = {Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--161},
     year = {1997},
     volume = {110},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a11/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - V. I. Yasnov
TI  - Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 149
EP  - 161
VL  - 110
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a11/
LA  - ru
ID  - TMF_1997_110_1_a11
ER  - 
%0 Journal Article
%A A. V. Razumov
%A V. I. Yasnov
%T Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 149-161
%V 110
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a11/
%G ru
%F TMF_1997_110_1_a11
A. V. Razumov; V. I. Yasnov. Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 110 (1997) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/TMF_1997_110_1_a11/

[1] L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui, A. Wipf, Phys. Rep., 222:1 (1992), 1 | DOI | MR

[2] P. Forgács, A. Wipf, J. Balog, L. Fehér, L. O'Raifeartaigh, Phys. Lett., 227B:2 (1989), 214 | DOI | MR

[3] I. Tsutsui, L. Fehér, Pror. Theor. Phys. Suppl., 118:1 (1995), 173 | DOI | MR | Zbl

[4] L. Fehér, I. Tsutsui, Regularization of Toda lattices by Hamiltonian reduction, Preprint INS-1123, Institute for Nuclear Study, University of Tokyo, Tokyo, 1995 | MR | Zbl

[5] T. Fülöp, Reduced $\mathrm{SL}(2,{\mathbb R})$ WZNW quantum mechanics, Report 509, Institute for Theoretical Physics, Eötvös University, Budapest, 1995

[6] H. Kobayashi, I. Tsutsui, Quantum mechanical Liouville model with attractive potential, Preprint INS-1124, Institute for Nuclear Study, University of Tokyo, Tokyo, 1996 | MR