Integral equation in the theory of phase transitions in the system of magnetic rods
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 427-440
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonlinear integral equation for the orientational distribution function (ODF), describing anisotropic nematic ordering in a system of magnetic rods, is investigated. The classification of bifurcation points is presented and their asymptotics are found for highly elongated rods
with the small and large magnetic moments. An algorithm for finding the ODF, near to isotropic, is developed in the neighborhood of bifurcation points. In the limiting cases of small and large magnetic moments of rods the found solutions (ODF) have the left direction of bifurcation. However, in the intermediate region of values of the magnetic moments the
solutions having the right direction of bifurcation exist along with solutions having the left direction of bifurcation.
@article{TMF_1996_109_3_a9,
author = {L. D. \`Eskin},
title = {Integral equation in the theory of phase transitions in the system of magnetic rods},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {427--440},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a9/}
}
TY - JOUR AU - L. D. Èskin TI - Integral equation in the theory of phase transitions in the system of magnetic rods JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 427 EP - 440 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a9/ LA - ru ID - TMF_1996_109_3_a9 ER -
L. D. Èskin. Integral equation in the theory of phase transitions in the system of magnetic rods. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 427-440. http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a9/