Iterated Mellin–Barnes integrals as periods on the Calabi–Yau manifolds with several modules
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 381-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In superstring compactification theory the representation of periods on the Calabi–Yau manifolds with several modules is given by iterated Mellin–Barnes integrals. By using this representation and multidimensional residues a method of analitic continuation for fundamential period is developed.
@article{TMF_1996_109_3_a5,
     author = {M. Passare and A. K. Tsikh and A. A. Cheshel},
     title = {Iterated {Mellin{\textendash}Barnes} integrals as periods on the {Calabi{\textendash}Yau} manifolds with several modules},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--394},
     year = {1996},
     volume = {109},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a5/}
}
TY  - JOUR
AU  - M. Passare
AU  - A. K. Tsikh
AU  - A. A. Cheshel
TI  - Iterated Mellin–Barnes integrals as periods on the Calabi–Yau manifolds with several modules
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 381
EP  - 394
VL  - 109
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a5/
LA  - ru
ID  - TMF_1996_109_3_a5
ER  - 
%0 Journal Article
%A M. Passare
%A A. K. Tsikh
%A A. A. Cheshel
%T Iterated Mellin–Barnes integrals as periods on the Calabi–Yau manifolds with several modules
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 381-394
%V 109
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a5/
%G ru
%F TMF_1996_109_3_a5
M. Passare; A. K. Tsikh; A. A. Cheshel. Iterated Mellin–Barnes integrals as periods on the Calabi–Yau manifolds with several modules. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a5/

[1] T. Hubsch, Calabi–Yau Manifolds-A Bestiary for Physicists, World Scientific, Singapore, 1992 | MR | Zbl

[2] P. Berglund, P. Candelas, X. de la Ossa, A. Font, T. Hubsch, D. Jancic, F. Quevedo, Nucl. Phys., B419 (1994), 352 | DOI | MR

[3] P. Candelas, X. de la Ossa, A. Font, S. Katz, S. R. Morrison, Nucl. Phys., B416 (1994), 481 | DOI | MR | Zbl

[4] P. Candelas, A. Font, S. Katz, S. R. Morrison, Mirror Symmetry for Two Parameter Model-2, E-print hep-th /9403187

[5] P. Berglund, E. Derrick, T. Hübsch, D. Janćić, On Periods for String Compactifications, HUPAPP–93/6

[6] S. Hosono, A. Klemm, S. Taisen, S.-T. Yau, Mirror Symmetry, Mirror Map and Aplication to Calabi–Yau Hupersurfaces, E-print hep-th /9308083 | MR

[7] P. Candelas, X. de la Ossa, P. Greene, L. Parkes, Nucl. Phys., B359 (1991), 21 | DOI | MR | Zbl

[8] B. R. Greene, M. R. Plesser, Nucl. Phys., B338 (1990) | MR

[9] V. V. Batyrev, Duke Math. Journ., 69 (1993), 349 | DOI | MR | Zbl

[10] P. Candelas, X. de la Ossa, S. Katz, Mirror Symmetry for Calabi–Yau Hupersurfaces in Weighted ${\mathbb CP}(4)$ and Extensions of Landau–Ginzburg Theory, E-print hep-th /9412117 | MR

[11] P. Berglund, S. Katz, Nucl. Phys., B420 (1994), 289 ; E-print hep-th /9311014 | DOI | MR

[12] A. K. Tsikh, Multidimensional Residues and Their Applications, 103, AMS, Providence, 1992 | MR | Zbl

[13] A. K. Tsikh, Metody teorii mnogomernykh vychetov, Dokt. diss., IM SORAN, Novosibirsk, 1990

[14] M. Passare, A. Tsikh, O. Zhdanov, Aspects of Math., E26 (1994), 233 | DOI | MR | Zbl

[15] Zh. Lere, Differentsialnoe i integralnoe ischislenie na kompleksnom analiticheskom mnogoobrazii, IL, M, 1961 | MR

[16] M. A. Mkrtchyan, A. P. Yuzhakov, Izv. AN Arm. SSR., 17 (1992), 99 | MR

[17] I. M. Gelfand, A. V. Zelevinskii, M. M. Kapranov, Funk. analiz i ego prilozh., 23:2 (1989), 12 | MR | Zbl

[18] A. G. Sveshnikov, A. N. Tikhonov, Teoriya funktsii kompleksnoi peremennoi, Nauka, M, 1967 | MR

[19] O. I. Marichev, Metod vychisleniya integralov ot spetsialnykh funktsii, Nauka, Minsk, 1978 | MR

[20] P. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley $\$ Sons, New York, 1978 | MR | Zbl

[21] E. Elizalde, K. Kirsten, S. Zerbini, Application of the Melline–Barnes integral reprezentation, V, E-print hep-th/9501048