B\"acklund--Shlesinger transformations for Davey--Stewartson equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 338-346

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Bäcklund explicit reversible autotransformations for the integrable Davey–Stewartson (DS) and Boiti–Leon–Pempinelli (BLP) equations exist. The scheme of construction of DS soliton solutions with the help of such transformations is suggested. The sequantial application of Bäcklund explicit reversible autotransformations makes possible to get solutions of $(1+1)$- and $(0+2)$-dimensional Toda lattice equations. The similar transformations for the analogs of DS, which are realized on the arbitrary associative algebra with unit are showed. The connection of these $(1+2)$-dimensional models with $(1+1)$-dimensional J–S systems is discussed.
@article{TMF_1996_109_3_a1,
     author = {A. V. Yurov},
     title = {B\"acklund--Shlesinger transformations for {Davey--Stewartson} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--346},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a1/}
}
TY  - JOUR
AU  - A. V. Yurov
TI  - B\"acklund--Shlesinger transformations for Davey--Stewartson equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 338
EP  - 346
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a1/
LA  - ru
ID  - TMF_1996_109_3_a1
ER  - 
%0 Journal Article
%A A. V. Yurov
%T B\"acklund--Shlesinger transformations for Davey--Stewartson equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 338-346
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a1/
%G ru
%F TMF_1996_109_3_a1
A. V. Yurov. B\"acklund--Shlesinger transformations for Davey--Stewartson equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 3, pp. 338-346. http://geodesic.mathdoc.fr/item/TMF_1996_109_3_a1/