Classification of motions of a relativistic string with massive ends with linearizable boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 187-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classified all motions (world surfaces) of a relativistic string with massive ends, for which equations of motion and boundary conditions can be linearized through a natural parametrization of the end's trajectories. These motions can be represented as Fourier series with eigenfunctions of some generalization of the Sturm–Liouville problem. Completeness of a set of these eigenfunctions in class $C$ is proved. It is shown that in $2+1$ and $3+1$-dimensional Minkowski spaces all these motions reduce to an uniform rotation of a straight string or some such spatially coincident strings (world surface is helicoid). In spaces with higher dimensionality other non-trivial motions of the investigated type are possible.
@article{TMF_1996_109_2_a2,
     author = {V. P. Petrov and G. S. Sharov},
     title = {Classification of motions of a~relativistic string with massive ends with linearizable boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {187--201},
     year = {1996},
     volume = {109},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a2/}
}
TY  - JOUR
AU  - V. P. Petrov
AU  - G. S. Sharov
TI  - Classification of motions of a relativistic string with massive ends with linearizable boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 187
EP  - 201
VL  - 109
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a2/
LA  - ru
ID  - TMF_1996_109_2_a2
ER  - 
%0 Journal Article
%A V. P. Petrov
%A G. S. Sharov
%T Classification of motions of a relativistic string with massive ends with linearizable boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 187-201
%V 109
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a2/
%G ru
%F TMF_1996_109_2_a2
V. P. Petrov; G. S. Sharov. Classification of motions of a relativistic string with massive ends with linearizable boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 187-201. http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a2/

[1] B. M. Barbashov, V. V. Nesterenko, Introduction to the relativistic string theory, World Scientific, Singapore, 1990 ; Б. М. Барбашов, В. В. Нестеренко, Модель релятивистской струны в физике адронов, Энергоатомиздат, М., 1987 | MR | Zbl

[2] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, T. 1, 2, Mir, M., 1990 | MR

[3] A. Chodos, C. B. Thom, Nucl. Phys., B72:3 (1974), 509–522 | DOI

[4] B. M. Barbashov, Nucl. Phys., B129:1 (1977), 175–188 | DOI

[5] B. M. Barbashov, A. M. Chervyakov, TMF, 74:3 (1988), 430–439 ; 89:1 (1991), 105–120 | MR | Zbl | MR

[6] B. M. Barbashov, V. V. Nesterenko, TMF, 31:3 (1977), 291–299 | MR

[7] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1980 | MR

[8] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970 | Zbl

[9] B. M. Barbashov, G. S. Sharov, TMF, 101:2 (1994), 253–271 | MR

[10] G. S. Sharov, TMF, 102:1 (1995), 150–159 | MR | Zbl

[11] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR | Zbl

[12] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[13] B. M. Barbashov, “Classical dynamics of rotating string with massive ends”, Strong Interactions at Long Distances, Hadronic Press, Palm Harbor, FL USA, 1995, 257