On a~solution of the Cauchy problem for the Boiti--Leon--Pempinelli equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 163-174
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Cauchy problem for the $2+1$-dimensional nonlinear Boiti–Leon–Pempinelli (BLP) equation in the framework of the Inverse Problem Method is considered. We derive evolution equations for the resolvent, Jost solutions and Spectral Data of the two-dimensional differential Klein–Gordon operator with variable coefficients that are generated by the considered BLP system of equations. Additional conditions on the Spectral Data that guarantee stability of the solutions of the Cauchy problem, are obtained. We present a recursion procedure for construction of polynomial integrals of motion and generating function of these integrals in terms of Spectral Data.
			
            
            
            
          
        
      @article{TMF_1996_109_2_a0,
     author = {A. K. Pogrebkov and T. I. Garagash},
     title = {On a~solution of the {Cauchy} problem for the {Boiti--Leon--Pempinelli} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a0/}
}
                      
                      
                    TY - JOUR AU - A. K. Pogrebkov AU - T. I. Garagash TI - On a~solution of the Cauchy problem for the Boiti--Leon--Pempinelli equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 163 EP - 174 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a0/ LA - ru ID - TMF_1996_109_2_a0 ER -
A. K. Pogrebkov; T. I. Garagash. On a~solution of the Cauchy problem for the Boiti--Leon--Pempinelli equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/TMF_1996_109_2_a0/
