Practical scheme of reduction to gauge-invariant variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 90-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For systems with first-class constraints, the reduction scheme to gauge-invariant variables is considered. The method is based on an analysis of restricted 1-forms in gauge-invariant variables. This scheme is applied to the models of electrodynamics and Yang–Mills theory. For the finite-dimensional model with the $SU(2)$ gauge group of symmetry, the possible mechanism of confinement is obtained.
@article{TMF_1996_109_1_a8,
     author = {G. A. Chechelashvili and G. P. Jorjadze and N. A. Kiknadze},
     title = {Practical scheme of reduction to gauge-invariant variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--106},
     year = {1996},
     volume = {109},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a8/}
}
TY  - JOUR
AU  - G. A. Chechelashvili
AU  - G. P. Jorjadze
AU  - N. A. Kiknadze
TI  - Practical scheme of reduction to gauge-invariant variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 90
EP  - 106
VL  - 109
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a8/
LA  - ru
ID  - TMF_1996_109_1_a8
ER  - 
%0 Journal Article
%A G. A. Chechelashvili
%A G. P. Jorjadze
%A N. A. Kiknadze
%T Practical scheme of reduction to gauge-invariant variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 90-106
%V 109
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a8/
%G ru
%F TMF_1996_109_1_a8
G. A. Chechelashvili; G. P. Jorjadze; N. A. Kiknadze. Practical scheme of reduction to gauge-invariant variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 90-106. http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a8/

[1] P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshive University, New York, 1964 | MR

[2] L. D. Faddeev, Theor. Math. Phys., 1:1 (1969) | DOI | MR

[3] K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics, 169, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl

[4] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[5] L. Lusanna, “Classical Yang–Mills Theory with Fermions. I: General Properties of a System with Constraints”, Internat. J. Modern Phys. A, 10:25 (1995), 3531–3579 | DOI | MR | Zbl

[6] K. Kuchar, Phys. Rev., D34 (1986), 3031 ; 3044 ; D35 (1987), 596 ; R. Loll, Phys. Rev., D41 (1990), 3785 ; G. Kunstatter, Dirac's vs. Reduced Quantization: a Geometrical Approach, Preprint LPTHE Orsay, 1991 | MR | MR | MR | MR | MR | Zbl

[7] L. D. Faddeev, A. A. Slavnov, Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow, 1984 | MR

[8] V. N. Gribov, Nucl. Phys., B139 (1978), 1 | DOI | MR

[9] V. P. Pavlov, A. O. Starinetz, “Phase space geometry for constrained systems”, Talk given at the meeting on “Constrained Dynamics and Quantum Gravity”, Dubna, 1995 (in Russian) | MR

[10] S. A. Gogilidze, A. M. Khvedelidze, V. N. Pervushin, On Admissible Gauges for Constrained Systems, Preprint JINR ZU-TH-4/95, 1995 | MR

[11] L. Faddeev, R. Jackiw, Phys. Rev. Lett., 60 (1988), 1692 ; R. Jackiw, (Constrained) Quantization Without Tears, Montepulciano, Italy, 1993 | DOI | MR | Zbl | MR

[12] G. Jorjadze, I. Sarishvili, Theor. Math. Phys., 93 (1993), 1239

[13] F. A. Berezin, Comm. Math. Phys., 40 (1975), 153 | DOI | MR | Zbl

[14] N. M. J. Woodhous, Geometric Quantization, Clarendon, Oxford, 1992 | MR | Zbl

[15] E. S. Fradkin, V. Ya. Linetski, BFV Quantization on Hermitian Symmetric Spaces, Preprint IC/94/393 | MR

[16] M. S. Plyushchay, Nucl. Phys., B362 (1991), 54 | DOI | MR

[17] P. A. M. Dirac, Can. J. Phys., 33 (1955), 650 | DOI | MR | Zbl

[18] A. Khvedelidze, V. Pervushin, Helv. Phys. Acta, 67 (1994) | MR | Zbl

[19] Yu. A. Kuznetsov, M. S. Plyushchay, Nucl. Phys., B389 (1993), 181 ; G. Jorjadze, L. O'Raifeartaigh, I. Tsutsui, Phys. Lett., B336 (1994), 388 | DOI | MR | DOI | MR

[20] P. Carruthers, M. Nieto, Rev. Mod. Phys., 40 (1968), 411 | DOI

[21] L. V. Prokhorov, Fiz. Elem. Chast. Atomn. Yadra, 25 (1994), 559 (in Russian)

[22] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Birkhauser Verlag, Basel, 1990 | MR | Zbl

[23] I. Bars, Phys. Rev. Lett., 40 (1978), 688 | DOI

[24] J. Goldstone, R. Jakiw, Phys. Lett., B74 (1978), 81 | DOI

[25] A. G. Izergin, V. E. Korepin, M. A. Semenov-Tyan-Schanskii, L. D. Faddeev, Theor. Math. Phys., 38 (1979), 1 | DOI | MR

[26] P. A. M. Dirac, Can. J. Math., 2 (1950), 129 | DOI | MR | Zbl

[27] A. Ashtekar, R. S. Tate, An algebraic extension of Dirac quantization: Examples, Preprint CGPG-94/6-1, 1994 ; E-print gr-qc/9405073 | MR

[28] C. Becchi, A. Rouet, R. Stora, Comm. Math. Phys., 42 (1975), 127 | DOI | MR

[29] E. S. Fradkin, V. Ya. Linetski, Nucl. Phys., B431 (1994), 569 | DOI | MR | Zbl

[30] G. W. Mackey, Induced Representations of Groups and Quantum Mechanics, Benjamin, New York, 1969 | MR

[31] D. McMullan, I. Tsutsui, BRST Instanton and Spin from Inequivalent Quantizations, Preprint DIAS-STP-93-21, Dublin, 1993 | MR

[32] C. J. Isham, Relativity Groups and Topology II, Proceedings of the Les Houches Summer School, Les Houches, France, 1983

[33] S. Deser, R. Jackiw, S. Templeton, Annals of Phys., 140 (1982), 372 | DOI | MR