Study of the convergence of the Schwinger–De Witt expansion for certain potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 70-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that Schwinger–de Witt expansion is convergent for the potential $V=q^2/2+g/q^2$ (here $g=\lambda(\lambda-1)/2$ and $\lambda$ is integer number) and for a number of three-dimensional potentials with separated variables, but is divergent for the potentials $V=qe^{aq}$, $V=-ge^{-a^2q^2}$. Thereby it is shown that the initial condition for the evolution operator kernel for two latter potentials is fulfilled only in asymptotic sense. An outstanding role of the potentials for which Schwinger–de Witt expansion converges is discussed.
@article{TMF_1996_109_1_a6,
     author = {V. A. Slobodenyuk},
     title = {Study of the convergence of the {Schwinger{\textendash}De} {Witt} expansion for certain potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--79},
     year = {1996},
     volume = {109},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a6/}
}
TY  - JOUR
AU  - V. A. Slobodenyuk
TI  - Study of the convergence of the Schwinger–De Witt expansion for certain potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 70
EP  - 79
VL  - 109
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a6/
LA  - ru
ID  - TMF_1996_109_1_a6
ER  - 
%0 Journal Article
%A V. A. Slobodenyuk
%T Study of the convergence of the Schwinger–De Witt expansion for certain potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 70-79
%V 109
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a6/
%G ru
%F TMF_1996_109_1_a6
V. A. Slobodenyuk. Study of the convergence of the Schwinger–De Witt expansion for certain potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a6/

[1] C. M. Bender, T. T. Wu, Phys. Rev. D, 7:6 (1971), 1620 | DOI

[2] L. N. Lipatov, ZhETF, 72:2 (1977), 411 | MR

[3] J. Schwinger, Phys. Rev., 82 (1951), 664 | DOI | MR | Zbl

[4] B. S. de Witt, Phys. Rep., 19 (1975), 297

[5] V. S. Popov, A. V. Sergeev, A. V. Scheblykin, ZhETF, 102 (1992), 1453

[6] D. I. Kazakov, D. V. Shirkov, Fortschr. Phys., 28 (1980), 465 | DOI | MR

[7] I. G. Halliday, P. Suranyi, Phys. Rev. D, 21:6 (1980), 1529 | DOI | MR

[8] A. G. Ushveridze, YaF, 38:3(9) (1983), 798 | MR

[9] A. N. Sissakian, I. L. Solovtsov, Z. Phys. C, 54:2 (1992), 263 | DOI

[10] V. A. Slobodenyuk, TMF, 105:2 (1995), 246 ; E-print hep-th/9412001 | MR | Zbl

[11] V. A. Slobodenyuk, Preprint IHEP 95–70, Protvino, 1995; E-print hep-th/9506134

[12] V. A. Slobodenyuk, Z. Phys. C, 58:4 (1993), 575 | DOI

[13] F. Calogero, J. Math. Phys., 10 (1969), 2191 | DOI | MR

[14] F. Calogero, J. Math. Phys., 10 (1969), 2197 | DOI | MR

[15] D. C. Khandekar, S. V. Lawande, J. Math. Phys., 16:2 (1975), 384 | DOI

[16] J. Rezende, J. Math. Phys., 25:11 (1984), 3264 | DOI | MR

[17] A. O. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 315 | DOI | MR