On asymptotyic evolution of a localized perturbation in the case of one dimensional Landau–Lifshitz equation with one-axis anisotropy
Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 128-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modulational instability of the plane waves in one-dimensional ferromagnetic described by the Landau–Lifshitz equation is analysed on the basis of the Whitham method. It is shown that this instability leads to formation of the domain structure in the system.
@article{TMF_1996_109_1_a11,
     author = {A. M. Kamchatnov and A. L. Krylov and G. A. El},
     title = {On asymptotyic evolution of a~localized perturbation in the case of one dimensional {Landau{\textendash}Lifshitz} equation with one-axis anisotropy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {128--136},
     year = {1996},
     volume = {109},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a11/}
}
TY  - JOUR
AU  - A. M. Kamchatnov
AU  - A. L. Krylov
AU  - G. A. El
TI  - On asymptotyic evolution of a localized perturbation in the case of one dimensional Landau–Lifshitz equation with one-axis anisotropy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 128
EP  - 136
VL  - 109
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a11/
LA  - ru
ID  - TMF_1996_109_1_a11
ER  - 
%0 Journal Article
%A A. M. Kamchatnov
%A A. L. Krylov
%A G. A. El
%T On asymptotyic evolution of a localized perturbation in the case of one dimensional Landau–Lifshitz equation with one-axis anisotropy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 128-136
%V 109
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a11/
%G ru
%F TMF_1996_109_1_a11
A. M. Kamchatnov; A. L. Krylov; G. A. El. On asymptotyic evolution of a localized perturbation in the case of one dimensional Landau–Lifshitz equation with one-axis anisotropy. Teoretičeskaâ i matematičeskaâ fizika, Tome 109 (1996) no. 1, pp. 128-136. http://geodesic.mathdoc.fr/item/TMF_1996_109_1_a11/

[1] J. Bernasconi, T. Schneider, Physics in One Dimension, Springer, Berlin, 1981 | MR

[2] S. E. Trullinger, V. E. Zakharov, V. L. Pokrovsky, Solitons, Noth-Holland, Amsterdam, 1986 | MR

[3] A. R. Bishop, D. K. Campbell, P. Kumar, S. E. Trullinger, Nonlinearity in Condensed Matter, Springer, Berlin, 1987 | MR

[4] A. M. Kosevich, B. A. Ivanov, S. A. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[5] V. I. Karpman, Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973 | MR

[6] G. A. El', A. V. Gurevich, V. V. Khodorovskii, A. L. Krylov, Phys. Lett., A177 (1993), 357

[7] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[8] A. M. Kamchatnov, Phys. Lett., A162 (1992), 389 | DOI | MR

[9] R. F. Bikbaev, A. I. Bobenko, A. R. Its, DAN SSSR, 272 (1983), 1293 | MR | Zbl

[10] A. I. Bobenko, Funkts. analiz i ego prilozh., 19 (1985), 6 | MR | Zbl

[11] A. M. Kamchatnov, ZhETF, 102 (1992), 1606 | MR

[12] H. Flaschka, G. Forest, D. W. McLaughlin, Comm. Pure Appl. Math., 33 (1979), 739 | DOI | MR

[13] I. M. Krichever, Funk. analiz i ego prilozh., 22:3 (1988), 37 | MR | Zbl

[14] A. M. Kamchatnov, Phys. Lett., A186 (1994), 389 | MR

[15] A. M. Kamchatnov, ZhETF, 97 (1990), 144

[16] A. V. Gurevich, A. L. Krylov, G. A. El, Pisma v ZhETF, 54 (1991), 104

[17] V. R. Kudashev, Pisma v ZhETF, 54 (1991), 179

[18] M. V. Pavlov, TMF, 71 (1987), 351 | Zbl

[19] A. V. Gurevich, L. P. Pitaevskii, ZhETF, 65 (1973), 590