Gibbs' phase rule revisited
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 465-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gibbs' phase rule and related properties of phase diagrams are obtained using simple combinatorial methods of associating a graph to each thermodynamic system. We think this approach allows a deeper understanding of the geometrical roots of this rule.
@article{TMF_1996_108_3_a8,
     author = {G. Guti\'errez},
     title = {Gibbs' phase rule revisited},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--468},
     year = {1996},
     volume = {108},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a8/}
}
TY  - JOUR
AU  - G. Gutiérrez
TI  - Gibbs' phase rule revisited
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 465
EP  - 468
VL  - 108
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a8/
LA  - ru
ID  - TMF_1996_108_3_a8
ER  - 
%0 Journal Article
%A G. Gutiérrez
%T Gibbs' phase rule revisited
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 465-468
%V 108
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a8/
%G ru
%F TMF_1996_108_3_a8
G. Gutiérrez. Gibbs' phase rule revisited. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 465-468. http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a8/

[1] The Scientific Papers of J. Williard Gibbs. Vol. 1. Thermodynamics, Dover Publications, New York, 1961 | MR

[2] C. J. Adkins, Equilibrium thermodynamics, Third Edition, Cambridge University Press, 1983; I. P. Bazarov, Thermodynamics, Pergamon Press (The Mac Millan Company), 1964, P. 155; H. Callen, Thermodynamics and an introduction to Thermostatistics, Second Ed., John Wiley Sons, 1985, P. 247

[3] W. Noll, Arch. Rational Mech. Anal., 38 (1970), 1–12 ; M. Feinberg, Arch. Rational Mech. Anal., 70 (1979), 219–234 ; C.-S. Man, Arch. Rational Mech. Anal., 91 (1985), 1–53 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969 | MR | Zbl

[5] B. Grünbaum, Convex Polytopes, Wiley (Interscience), New York, 1967 | MR | Zbl