Statistical theory of nonlinear hydrodynamic fluctuations of ion systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 448-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For ionic system on the base of Fokker–Plank equation for the distribution function of coarse-grained dynamic variables (mass density, charge density, momentum density, current density and total energy) the equations for time correlation functions are obtained. Calculations of the statistical weight, thermodynamic forces and hydrodynamic velocities bots in gaussian and higher approximations are carried out. The expressions for generalized transfer coefficients depending on $k$ and $\omega$ whith distinguished contributions of fluctuations are found.
@article{TMF_1996_108_3_a7,
     author = {V. V. Ignatiuk and M. V. Tokarchuk},
     title = {Statistical theory of nonlinear hydrodynamic fluctuations of ion systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--464},
     year = {1996},
     volume = {108},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a7/}
}
TY  - JOUR
AU  - V. V. Ignatiuk
AU  - M. V. Tokarchuk
TI  - Statistical theory of nonlinear hydrodynamic fluctuations of ion systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 448
EP  - 464
VL  - 108
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a7/
LA  - ru
ID  - TMF_1996_108_3_a7
ER  - 
%0 Journal Article
%A V. V. Ignatiuk
%A M. V. Tokarchuk
%T Statistical theory of nonlinear hydrodynamic fluctuations of ion systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 448-464
%V 108
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a7/
%G ru
%F TMF_1996_108_3_a7
V. V. Ignatiuk; M. V. Tokarchuk. Statistical theory of nonlinear hydrodynamic fluctuations of ion systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 448-464. http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a7/

[1] N. H. March, M. P. Tosi, Coulomb liquids, Acad. Press, 1984

[2] D. N. Zubarev, M. V. Tokarchuk, Obobschennaya gidrodinamika ionnykh sistem, Preprint ITF-86-40r

[3] D. N. Zubarev, M. V. Tokarchuk, TMF, 70:2 (1987), 234–254 | MR

[4] D. N. Zubarev, “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131–220

[5] M. Dixon, M. J. Gillan, Phys. Mag. B, 43:6 (1981), 1099–1112 | DOI

[6] D. N. Zubarev, V. G. Morozov, Physica A, 120:3 (1983), 411–467 | DOI | MR

[7] V. V. Ignatjuk, M. V. Tokarchuk, Transfer processes in two-component plasma in the self-electromagnetic field. The equations of hydrodynamic and fluctuations, Preprint ICMP-93-1E

[8] D. N. Zubarev, TMF, 53:1 (1982), 93–107 | MR

[9] I. R. Yukhnovskii, M. F. Golovko, Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[10] I. R. Yukhnovskii, K statisticheskoi teorii kondensirovannykh sistem s dalnodeistvuyuschimi i korotkodeistvuyuschimi mezhchastichnymi vzaimodeistviyami, Preprint ITF-79-133r

[11] I. M. Idzik, M. V. Tokarchuk, Do statistichnoï teoriï neliniinikh gidrodinamichnikh fluktuatsii. I: rozrakhunok statistichnoï vagi, termodinamichnikh sil, funktsionalu entropiï ta gidrodinamichnikh shvidkostei, Preprint IFKS-91-6u

[12] V. G. Morozov, Physica A, 110:1–2 (1982), 201–221 | DOI

[13] J. P. Boon, Yip Sidney, Molecular Hydrodynamics, Mc Graw.-Hill. Inter. book company, 1980 | Zbl

[14] V. G. Morozov, Physica A, 117:3 (1983), 511–530 | DOI | Zbl