The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 431-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum mechanical systems with Hamiltonians varying periodically in time are considered. It is supposed that spectrum of Floquet operator has no absolutely continuous part, and spacings between quasienergies may be described statistically by means of a continuous density. It is shown that statistical density induced for spacings between the fractions $\mod(\hbar\omega)$ renormalized in the suitable manner comes arbitrarily close to exponential distribution as soon as the level number is infinitely increased. The result does not depend on the original statistical law. The alternative method of statistical description of fractions is proposed. This makes it possible to distinguish between the statistical laws of the regular and chaotic regimes.
@article{TMF_1996_108_3_a6,
     author = {Yu. L. Bolotin and Yu. P. Virchenko},
     title = {The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {431--447},
     year = {1996},
     volume = {108},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a6/}
}
TY  - JOUR
AU  - Yu. L. Bolotin
AU  - Yu. P. Virchenko
TI  - The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 431
EP  - 447
VL  - 108
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a6/
LA  - ru
ID  - TMF_1996_108_3_a6
ER  - 
%0 Journal Article
%A Yu. L. Bolotin
%A Yu. P. Virchenko
%T The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 431-447
%V 108
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a6/
%G ru
%F TMF_1996_108_3_a6
Yu. L. Bolotin; Yu. P. Virchenko. The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 431-447. http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a6/

[1] F. Haake, Quantum Signatures of Chaos, Springer, Berlin, 1991 | MR | Zbl

[2] J. N. Shirley, Phys. Rev., B138:4 (1965), 979–987 | DOI

[3] Hideo Sambe, Phys. Rev., A7:7 (1973), 2203–2213

[4] Ya. B. Zel'dovich, Sov. Phys. JETP, 24 (1967), 1006

[5] V. I. Ritus, Sov. Phys. JETP, 24 (1967), 1041

[6] Ya. B. Zel'dovich, Sov. Phys. Usp., 16 (1973), 427 | DOI

[7] G. Casati, L. Molinari, Progr. Theor. Phys. Suppl., 1989, no. 98, 287–322 | DOI | MR

[8] L. Reichl, The Transition to Chaos, Springer, Berlin, 1992 | MR | Zbl

[9] O. Bohigas, Chaos and Quantum Physics, Les-Houches Session LII, eds. M. Giannoni, A. Voros and J. Zinn-Justin, North-Holland, Amsterdam, 1989 | MR

[10] Zyczkovski, Acta Phys. Polon., B24:5 (1993), 967–1025

[11] A. J. Lichtenberg, M. A. Lieberman, Regular and Stochastic Motion, Springer, New York–Heidelberg–Berlin, 1983 | MR

[12] C. F. Porter, Statistical theory of spectra fluctuations, Academic Press, New York, 1965

[13] W. Feller, An introduction to probability theory and its applications, V. II, John Willey and Sons Inc., New York, 1966 | MR | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[15] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[16] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[17] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR