Deformations of triple Jordan systems and integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 388-392

Voir la notice de l'article provenant de la source Math-Net.Ru

Deformations of arbitrary triple Jordan systems are considered. They are defined in terms of the deformation vector satisfying a compatible overdetermined system of differential equations. For the simple triple Jordan systems the deformation vector is explicitly found. It gives rise to new classes of integrable partial differential equations with arbitrary number of unknown functions.
@article{TMF_1996_108_3_a1,
     author = {S. I. Svinolupov and V. V. Sokolov},
     title = {Deformations of triple {Jordan} systems and integrable equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--392},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/}
}
TY  - JOUR
AU  - S. I. Svinolupov
AU  - V. V. Sokolov
TI  - Deformations of triple Jordan systems and integrable equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 388
EP  - 392
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/
LA  - ru
ID  - TMF_1996_108_3_a1
ER  - 
%0 Journal Article
%A S. I. Svinolupov
%A V. V. Sokolov
%T Deformations of triple Jordan systems and integrable equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 388-392
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/
%G ru
%F TMF_1996_108_3_a1
S. I. Svinolupov; V. V. Sokolov. Deformations of triple Jordan systems and integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 388-392. http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/