Deformations of triple Jordan systems and integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 388-392
Voir la notice de l'article provenant de la source Math-Net.Ru
Deformations of arbitrary triple Jordan systems are considered. They are defined in terms of the deformation vector satisfying a compatible overdetermined system of differential equations. For the simple triple Jordan systems the deformation vector is explicitly found. It
gives rise to new classes of integrable partial differential equations with arbitrary number of unknown functions.
@article{TMF_1996_108_3_a1,
author = {S. I. Svinolupov and V. V. Sokolov},
title = {Deformations of triple {Jordan} systems and integrable equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {388--392},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/}
}
TY - JOUR AU - S. I. Svinolupov AU - V. V. Sokolov TI - Deformations of triple Jordan systems and integrable equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 388 EP - 392 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/ LA - ru ID - TMF_1996_108_3_a1 ER -
S. I. Svinolupov; V. V. Sokolov. Deformations of triple Jordan systems and integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 3, pp. 388-392. http://geodesic.mathdoc.fr/item/TMF_1996_108_3_a1/